
DDLVis: Real-time Visual Query of Spatiotemporal Data Distribution via
Density Dictionary Learning

Chenhui Li, George Baciu, Yunzhe Wang, Junjie Chen, and Changbo Wang

Fig. 1. DDLVis system interface. a) A spatial query is applied on a geographical map view; b) a time period is selected as query input; c) a stream
view shows the temporal data of the selected key points; d) a statistical view provides the exploration of the temporal data according to day and
hour; e) the option panels support parameter setting and query type switching. The color meanings in panels c) and d) are described in Sect. 6.5.

Abstract—Visual query of spatiotemporal data is becoming an increasingly important function in visual analytics applications. Various works
have been presented for querying large spatiotemporal data in real time. However, the real-time query of spatiotemporal data distribution is still an
open challenge. As spatiotemporal data become larger, methods of aggregation, storage and querying become critical. We propose a new visual
query system that creates a low-memory storage component and provides real-time visual interactions of spatiotemporal data. We first present a
peak-based kernel density estimation method to produce the data distribution for the spatiotemporal data. Then a novel density dictionary learning
approach is proposed to compress temporal density maps and accelerate the query calculation. Moreover, various intuitive query interactions are
presented to interactively gain patterns. The experimental results obtained on three datasets demonstrate that the presented system offers an
effective query for visual analytics of spatiotemporal data.

Index Terms—Visual query, information visualization, spatiotemporal data, data compression, interaction, density map

1 INTRODUCTION

Spatiotemporal data are increasingly produced in real-time by physical
sensors, such as vehicles, mobile phones, and climate monitors. Visual
queries of the spatiotemporal patterns are beneficial to many domains, such

• Chenhui Li, Junjie Chen, and Changbo Wang are with School of Computer
Science and Technology, East China Normal University. Changbo Wang is the
corresponding author. E-mail: chli@cs.ecnu.edu.cn, cbwang@cs.ecnu.edu.cn.
George Baciu is with The Hong Kong Polytechnic University. Yunzhe Wang is
with Suzhou University of Science and Technology.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication xx xxx.
201x; date of current version xx xxx. 201x. For information on obtaining reprints of
this article, please send e-mail to: reprints@ieee.org. Digital Object Identifier:
xx.xxxx/TVCG.201x.xxxxxxx

as geographical research, urban environment estimation, and air pollution
analysis. Some relevant visual query works have been previously proposed.
Nanocubes [27] and imMens [28] provided a fast approach to query big data
in real time in two-dimensional space. The further improvement includes
the works of Hashedcubes [38], which offered a memory-efficient data
structure for querying and exploring big data. However, most of the existing
methods assume the query operation is applied on the raw dataset. When
the data are sparse or dense in a two-dimensional space, the distribution
representation approach, such as kernel density estimation (KDE) [24], is
usually used to prioritize and represent the information in a dataset before
pursuing higher levels of visual exploration. Many visualization works, such
as Splatterplots [35], Hotspots [30], and StreamMap [26], show the benefits
of the KDE-based approach. KDE-based approaches can overcome the visual
clutter problem and help the user to comprehend significant patterns of the
majority of spatiotemporal data when they include unorganized structures



and features.
To our best knowledge, less attention has been paid to the visual query of

density-estimated spatiotemporal data in the information visualization field.
Most visual query work focuses on the most common type of data, which is
sparse points. To simplify the definition, the spatio-temporal data discussed
later does not include line-based and region-based data. Density-estimated
point data in two-dimensional space are normally generated via KDE. For
example, the spatiotemporal air pollution data are normally incomplete
because we cannot distribute infinite sensors in the world to detect the wide
scope of the data. KDE is an alternative approach to produce a wide range
of information about air pollution distribution. However, the reduction of
the temporal density map size is challenging in a real-time visual query of
spatiotemporal data distribution. For example, if the spatiotemporal data
for distribution querying includes 10,000 frames, one of which is estimated
as a density map with 10242 pixels through KDE, then a distribution query
operation, such as a mean query of the whole data period, on 10,000 density
maps requires approximately 10 GB of memory. Such memory consumption
is unacceptable for a real-time visual query system, particularly when the
system is running on a memory-limited mobile device. Besides, some
works of Kim et al. [20] and Li et al. [26] present approaches to visualize
the variational field between two spatial frames. However, while some
researchers, such as Correll and Gleicher [8], have presented a visual query
framework for understanding and exploring variation information in one-
dimensional space, the query of variation in two-dimensional space is still a
challenge.

To address these issues, we present a visual query framework, DDLVis,
to fulfill the requirements of a real-time visual query of the spatiotemporal
data distribution. Our method is proposed for storing, visualizing, and
querying the density maps effectively. DDLVis aids users in obtaining
insights regarding the distribution variation and evolution according to the
selection. First, we propose a peak-based kernel density estimation (PKDE)
method that transforms the raw spatiotemporal data into the sequential
high-accuracy fixed-size density maps in an efficient way. The PKDE
method ensures the performance of density map generation and requires a
limited parameter setting for the temporal data. Second, we present a novel
dictionary learning method to encode the temporal density maps to small-size
sparse code before pursuing higher levels of the visual query. We consider
the efficiency of the data storage and data processing to support a real-time
visual query. Third, a peak-based variation generation model is applied on
temporal density maps to provide an efficient processing approach to allow
the user to comprehend the variation patterns of interest. We also present
helpful interactions to simplify the query operation from two perspectives:
spatial and temporal perspectives.

Our experiments show that our approach can be applied to the spatiotem-
poral datasets effectively and help to query and comprehend the temporal
and spatial patterns. The main contributions of our work are as follows:
(1) We propose a variable kernel density estimation approach to present the

spatial data in a structured format, which can enrich the visibility and
reduce the preprocessing complexity of the query.

(2) We address a novel sparse coding approach through dictionary learning
aimed at a low-memory storage of the density map and a fast process
and query of the temporal density maps.

(3) We provide a technically efficient processing approach to generate and
query the variation of the temporal density maps.

2 RELATED WORK

For large-scale spatiotemporal data analysis, a convincing visual query
framework is essential to rapidly find useful information. We review related
methods on visual query approaches that include the following content:
visual encoding of spatiotemporal data, visual query system, and dictionary
learning.

2.1 Visual Query System
Early query processes are normally graphical interfaces of the traditional
structured query language (SQL), as shown in the work of Derthick et al. [9].
Johansson et al. [17] presented an alpha blending method to address the
querying of high-dimensional data. Recently, researchers have begun to
focus more on visual big data queries due to the demand for data analysis.
Ferreira et al. [13] constructed a spatiotemporal system that supports the in-
teractive visualization of data patterns and potential details. Turkay et al. [51]
visualized the variations in time and scale according to a brushing path on

the geographical map. Slingsby and Van [49] proposed a similar brush-based
interaction. There are many alternative methods are available for visualizing
and querying the large-scale spatiotemporal data. Liu et al. [28] provided
an interactive querying method on a large-scale dataset. Their system can
support a rectangle-based interaction. Lins et al. [27] further presented
nanocubes to support very large geographical data querying and browsing
and demonstrated their system on a large Twitter location dataset. Correll
and Gleicher [8] introduced a complete sketch-based visual query framework
for understanding and exploring time-series data in one-dimensional space.
A real-time visual exploratory approach, called TopKube [37], was proposed
to find top-ranked objects in the spatiotemporal data. Then Pahins et al. [39]
outlined Quantile Datacube Structure (QDS) to explore data patterns via
order statistics. Later, a distribution-aware approach, RSATree [36], was
proposed to support the visual query of large-scale tabular data. For the
efficient selection for visual exploration, Guo et al. [14] formalized a spatial
object selection problem and presented a new approach to select representa-
tive objects from the region of interest. However, the distribution variation
and the temporal characteristics have not been considered in the prior visual
query systems.

As the amount of data and time period become larger and larger, the
previous method is somewhat challenging. On the one hand, the previous
visual query methods need to design different data structures for different
data density; on the other hand, the previous methods require a larger data
storage space. A visual system for querying spatiotemporal data distribution
is lacking. Compared with the prior methods, DDLVis aims a fast query
approach for spatiotemporal data distribution in an intuitive way.

2.2 Visual Encoding of Spatiotemporal Data
Numerous approaches are presented for the visual encoding of the spatiotem-
poral data. CloudLines [23] is a timeline tool for visualizing event episodes
in temporal data. Jänicke et al. [16] describe an interactive system to query
and explore point-based data based on space and time via a dynamic Delau-
nay triangulation approach. Apart from the direct visualization timeline, the
similarity measurement of time-series records has been discussed in [56],
which is beneficial to the compatible visualization of continuous data. Visual-
izing patterns through timeline deformation is put forward by Bach et al. [2].
Their work overcame the space limitation problem of the prior timeline visu-
alization while preserving the time information. Another work, called event
cueing [29], studied the spatiotemporal distribution of evolving media dis-
course. Event cueing utilizes the benefit of the timeline and allows users to
explore underlying spatial patterns. Brehmer et al. [5] surveyed several time-
lines and designed a hybrid timeline representation that combines different
timeline representations in a three-dimensional design space. Data abstrac-
tion is another type of visual encoding approach to preserve users’ important
features. Shurkhovetskyy et al. [47] presented a comprehensive classification
of data abstraction methods for temporal data visualization. Data abstrac-
tion methods also include the works of STULL [53] and Phoenixmap [59].
STULL presents a new pyramid-based sampling approach to reduce the data
size for a geovisualization. Phoenixmap is a new visual design that deals
with the multiple spatial distributions through enclosed outlines.

Another frequently used visual encoding method for spatiotemporal data
distribution is the KDE (kernel density estimation), as described in the
work of Silverman [48]. Many KDE-based studies have been presented to
overcome the overdrawing problem and present the distribution. Scheepens
et al. [46] offered a composite approach to present multiple density maps.
They improve the density map visualization through contour enhancement.
Hurter et al. [15] provided a KDE-based visual clustering approach to address
visual clutter in complex graph drawing. An extension of KDE [35] has
been presented to further overcome the overdrawing problem in visualizing
high-dimensional data. Maciejewski et al. [30, 31] presented Hotspot to
abstract the spatiotemporal data. Hotspot took advantage of both KDE and
timeline to visualize the variation evolution. Willems et al. [55] adopted
KDE to address the problems involved in visualizing moving objects. Perrot
et al. [42] outlined a GPU-based approach to estimate the point density. For
the analysis of spatiotemporal data without trajectory information, Kim et
al. [20] and Li et al. [26] provided trend visualization models to present the
spatial variations on a two-dimensional map.

The KDE approach can ignore the impact of data scale since it can map
large-scale spatial data of a certain time period to the normalized density
map. Although the KDE approach provides a good visual representation for
a large-scale dataset, visual query over temporal density maps is challenging



in terms of efficiency when the system memory is limited. As far as we know,
no previous studies have implemented a visual query system on temporal
density maps. DDLVis enriches visibility and reduces the preprocessing
complexity of the query.

2.3 Dictionary Learning
The dictionary learning approach [1] aims at learning the most pristine
features behind the raw data and representing data via sparse codes. The
learned dictionary contains prototype atoms that can describe the raw data
via linear combinations of the prototype atoms. Dictionary learning has been
adopted in many visual media applications, such as signal compression [6],
classification [58], feature extraction [7], image super-resolution [57], and
compressive sensing [10]. Signal compression is an intuitive application of
dictionary learning because only a dictionary and a sparse code are required
to be stored. Signal compression through dictionary learning is similar
to the usage of JPG2000 [34], which compresses the natural image with
a high compression ratio through wavelet transforms. The difference is
that JPG2000 standard code requires a complete wavelet dictionary. The
calculation of the wavelet transform method is time-consuming.

K singular value decomposition (K-SVD) [1]is an effective method to
learn the image sparse representation from many samples. Further improve-
ments of K-SVD have been discussed in the work of Elad et al. [11]. With
the rise of deep learning research, CNNs (convolutional neural networks [40]
are also used in the dictionary learning approach. Since dictionary learning
can represent as much knowledge as possible with few resources, it has the
potential to be used in large-scale processing and analysis of spatiotemporal
data.

Therefore, because of the demand of large-scale spatiotemporal data query
and visualization, and considering the shortcomings of visual queries on
distribution data and the advantages of KDE and dictionary learning methods
in data expression, we proposed the DDLVis method, so far lacking in the
prior studies. DDLVis aims at a low-memory storage implementation of
the density map and a fast and abundant query of the spatiotemporal data
distribution.

3 SYSTEM OVERVIEW

The pipeline of our system is shown in Fig. 2. The input data of our system
are sequential frames as shown in Fig. 2(a). Each frame is a set of spatial
points with a timestamp. We define a frame as Fi, where i indicates the
timestamp. Since the location points are common data in geographical
applications, we assume the spatial points in our system are locations of
sensors or people. Each frame is processed as a density map with the
same size through PKDE as shown in Fig. 2(b). A training set generation
(TSG) method selects the representative density maps for training, as shown
in Fig. 2. The dictionary learning method is applied on selected density
maps, as shown in Fig. 2(d). With the trained dictionary, the density maps
can be represented as a set of small-size sparse codes. Fig. 2(e) shows the
interface of our proposed system.

Our system is constructed as follows:
(1) To calculate the temporal data distributions, we present an aggregation

method called PKDE to estimate a series of accurate density maps during
a period to represent the spatiotemporal data in a regular form. PKDE
produces accurate temporal density maps via an adaptive estimation
kernel selection approach.

(2) To reduce physical memory usage and accelerate the query process, we
present a novel learning method, density dictionary learning (DDL),
which applies the dictionary learning method on the temporal density
maps.

(3) To assist the query process and represent the query result, we design
interactive operations to help users with querying and comparing the
evolution, variation, and statistical information of the spatiotemporal
data intuitively. We provide abundant visual effects in accordance with
the query interactions.

4 PEAK-BASED KERNEL DENSITY ESTIMATION

The peak-based kernel density estimation (PKDE) approach is presented
to produce the data distribution by estimating the data density in a region.
For each frame of the spatial data, we apply a peak-based clustering method
to find the clusters. The data points belonging to the same cluster will be
processed with the same kernel size in the density estimation process as
shown in StreamMap [26]. We assume that the kernel size h is related to the

Input Data

Peak-Based
Clustering

PKDE

Dictionary
Learning

Pixel Chain
DDL

DDL

Spatial
Query

Temporal
Query

Visualization & Interaction

(a) (b) (c)

(e)

Adaptive
Sparse
Coding

Adaptive
Kernel Density

Estimation

Frame 1 (t1)

Frame 2 (t2)

Frame n (tn)

Spatial
Variation

DDL

Density
Map 1

Density
Map 2

Density
Map n

...

Density Maps

(f)

TSG

Training
Set

Generation

(d)

Visualization

Spatiotemporal Query

...

TSG

Fig. 2. The pipeline of our visual query system. The proposed system includes
three main components: PKDE, DDL, and the visualization and interaction for
the visual query.

point count n and the spatial boundary box area sa of the cluster. We define
h = λ

√
sa/n,λ ≥ 2, where λ is an experimental parameter that ensures the

estimated density map is a single connected region.

KDE [48] is a statistical method to estimate the distribution of spatial data.
For sparse data, KDE represents the potentially influenced regions. For high-
density data, KDE reduces the visual clutter as discussed in the visualization
work of Roeland et al. [46]. As described in the work of Silverman et al. [48].
The kernel size selection is a key issue of the density estimation. When KDE
is applied to sequential data frames, the kernel size setting is challenging.
Therefore, we propose a variable kernel density estimation method, PKDE,
to adaptively adjust the estimation kernels for spatiotemporal data.

In the proposed approach of PKDE, we assume that the input data in
our system are spatiotemporal data in two-dimensional space as shown
in Fig. 3(b). The elements of each data record include a 2D location, feature
index, and timestamp. The feature index depends on the type of dataset. For
example, the feature index means the air quality index if the spatiotemporal
data are related to an air quality dataset. Traditional k-means clustering [32],
DBSCAN [12], and superpoint-based clustering (SKDE) [26] are not suitable
for common nonspherical clustering tasks. The nonspherical clustering
means the shape of the cluster is not spherical. Our proposed PKDE aims
to produce nonspherical clusters and it guarantees the cluster coherences.
PKDE requires fewer calculation resources. Thus, it is more suitable for
sequential density estimation.

The PKDE approach not only generates a more accurate density map than
using SKDE but also provides the peak point candidates for the next variation
generation. Variation information is the base data for the variation query
in DDLVis. We will discuss the advantage of PKDE for the preprocessing
complexity reduction of the query in Section 5.5. There are three steps of
the PKDE. First, we propose to adopt a peak-based clustering approach
(CFSFDP) [44] to find the peak-element and then cluster the elements in the
first data frame. Second, to generate the coherence of the clusters between
two frames, predetermined peak-elements are used to accelerate the element
clustering in the next data frame. Third, when the elements in each frame are
clustered, the estimation kernels of each cluster are fixed. Then, we estimate
the density of a frame with the corresponding kernel size.

PKDE assumes that the cluster peak is always surrounded by other el-
ements with a lower density, and the cluster peak is far away from other
elements with a higher density. Following the CFSFDP [44] method, we



(a) K-means clustering (b) Peak-based clustering

(c) KDE via K-means (d) PKDE result

(e) Decision graph of PKDE. Two found peaks indicate two clusters.

Fig. 3. Estimated density maps through different approaches. Circles in (a)
and (b) indicate the clusters.

define the local density of each element ρi as follows:

ρi = ∑
x j∈S

ψ(dist(xi,x j)−distc),ψ(x)=
{

1,(x≤ 0)
0,(x > 0) (1)

where dist means the Euclidean distance, S is the element set of a data frame,
and distc is a cutoff parameter. δi represents the minimum distance between
element i and other elements with a higher local density. ρi is the number of
points within a certain distance of a point xi. δi is formulated as follows:

δi= min
j:ρj>ρi

(dist(xi,x j)) (2)

After the ρ and δ of each element i are calculated, a decision diagram
is drawn to find the peak of a dataset. The point at the upper right corner
of the decision diagram is the peak element of the cluster. Fig. 3(e) is an
example. The clustering principles are as follows: (1) The elements with
very low density are usually noise. (2) If an element’s ρ and δ are with the
top 50%, it will be selected as a peak. The peak selection must meet the
conditions of δi ≥ 1

2 Max
j∈S

(
δj
)

and ρi ≥ 1
2 Max

j∈S

(
ρj
)
. The remaining elements

will be assigned in the cluster where the peak is closest to its location. (3)
Selected peaks will be used as references in the next frame clustering. It is
easy to find two peaks in Fig. 3(e). Fig. 3(a-d) shows the density estimation
results using different approaches. Fig. 3(b,d) shows that PKDE has better
performance of data clustering and density estimation than that of k-means as
shown in Fig. 3(a,c). We evaluate the performance among k-means, SKDE,
and PKDE in Section 8.

After the density estimation, the spatiotemporal data in a period can be
represented as a number of regular density maps. We assume the size of
each density map is the same. The estimated sequential density maps can
be formulated as DDDMMM = {D1,D2, ...,Dm} where m is the count of density

(a) K-measns (t1, t2, t3) (b) SKDE(t1, t2, t3) (c) Ours(t1, t2, t3)

Fig. 4. Temporal clustering results through different strategies.

maps. Temporal clustering results through different strategies are shown
in Fig. 4. The clustering continuity of our method is better than the other two
approaches. The PKDE method also has shortcomings. When the clusters of
two frames do not have any overlap, the effectiveness of the PKDE method
on time series data is weak.

5 DENSITY DICTIONARY LEARNING

Our system provides a variety of visual query approaches to query data from
large-scale spatiotemporal data. These methods require the high efficiency
of loading and processing. Therefore, we propose to use dictionary learning
to encode the density map. Dictionary learning can reduce the time overhead
of data transmission and loading, thus it improves the efficiency of the visual
query. We assume that a sequence of time-series frames, each frame is a
density map, has been generated using the PKDE method. Next, we will
introduce how to use DDL method to encode the density map to generate a
smaller sparse code.

The basic idea of DDL is a training process that learns a dictionary to
represent the local patterns of density maps. DDL has a low demand for
calculation memory and accelerates the query process. Our DDL method
includes three steps. The first step is a training set generation process that
selects the representative density maps. In the second step, we use the
dictionary learning approach to iteratively find the optimal dictionary. A
dictionary consists of a number of eigenvectors. The third step is to convert
density maps into sparse codes (sparse eigenvalues) by a sparse coding
method based on a trained dictionary.

To support the real-time visual query, we apply the DDL method to
temporal density maps generated via PKDE. The learned dictionary and
generated sparse codes are produced to support the high-performance visual
query on the data in a period. We generate the sparse codes for each density
map. The sparse codes and the dictionary will be stored for the further visual
queries and visualizations. By using a dictionary and sparse codes, we can
represent any of the density maps that belong to a specified type. Section 8
shows the effectiveness of DDL.

5.1 Training Set Generation

Learning the patterns from one density map is not sufficient to make it
accurately represent the whole dataset. Additionally, it is a time-consuming
task to learn the dictionary based on all density maps. Hence, we select
representative density maps as the training set to learn the patterns. A
specific clustering method is used to cluster similar density maps together.
One cluster provides only one density map. The proposed approach will not
only improve the training accuracy of dictionary learning but also reduce the
size of training set.



Training set generation (TSG) is a fast and effective density map clustering
approach. TSG takes advantage of the perceptual hash algorithm (PHA) [18]
and spectral clustering method (SCM) [52]. SCM is an improvement of the
k-means approach [32]. First, the original density map is scaled to a 16×16
image. Second, the mean pixel value is computed. Third, we initialize a
256-bit hash code via PHA. If the pixel value is larger than the mean pixel,
we set the corresponding bit to 1. Otherwise, we set it to 0. Because there
are a large number of time series density maps, it is inefficient to directly
calculate the image similarity on the grayscale image. Hash code calculation
is high-performance. Fourth, based on the calculation of two 256-bit hash
codes, we can calculate the similarity matrix of density maps through the
Hamming distance comparison [3]. Based on the similarity matrix, density
maps are clustered via SCM. The K parameter setting of SCM is related to
the global type number of the dataset. For example, if the global types of
an air quality dataset are summarized as Good, Moderate, Unhealthy, and
VeryUnhealthy, K is set to 4. One density map is selected from a cluster. We
define the final selected density maps from different clusters as TTT SSS. Fig. 5
shows the TSG pipeline.

Fig. 5. The pipeline of training set generation (TSG). (a) The original density
maps are scaled to a 16× 16 image. A 256-bit perceptual hash code is
generated for each scaled density map. (b) The similarity matrix of perceptual
hashes are calculated. (c) Based on the similarity matrix, SCM is applied
to cluster the density maps into different groups. (d) Representative density
maps from the clusters consist of the training set.

5.2 Dictionary Learning

Dictionary learning is a process that finds the eigenvectors (representative
patterns) of the input data. The input data in our approach is a patch of
the density map. There are three elements in a dictionary learning process
such as Y (patch), A (dictionary), and X (sparse code) as shown in Fig. 6. Y
indicates a patch of the density map. A stores the learned optimal eigenvec-
tors. X is a sparse code that stores the eigenvalues. Fig. 6 also shows the
basic idea of recovering the patch from a dictionary and a sparse code. In
DDLVis system, the selected density maps (TTT SSS) are divided into m patches
with a 16× 16 size. The patch size of 16× 16 is an experimental value.
Hence, each patch is represented as a 256-dimensional vector. Sparse code
takes very little memory and represents the eigenvalues of a patch. We use
three float numbers (12 bytes) to represent a 256-dimensional vector. The
experimental minimum storage requirement for a sparse code is 12 bytes.
Details of the dictionary learning process are listed as follows.

We assume Ainit as the initial dictionary (256×m matrix) that is set via
random pixel sampling from the selected density maps (TTT SSS). m indicates
the eigenvector number of the dictionary. The final optimal dictionary is
defined as A. yyyiii means a density map patch. xxxiii means a sparse code of the
density map patch with respect to the dictionary A. i indicates the patch
index. Based on Ainit , xxxiii is calculated by using orthogonal matching pursuit
(OMP) [50]. The purpose of OMP [50] is to disassemble a known signal
into a weighted sum of many atomic signals and to find the eigenvalues for
the atomic signals. The number of eigenvalues in the OMP is fixed.

min
A,xi

N

∑
i=1
‖yi−Axi‖2

2 +λ

N

∑
i=1
‖xi‖1 (3)

When all sparse codes are calculated, we update the initial dictionary
through SVD [1]. An optimization model as shown in Equ. 3 is designed
to minimize the error energy of the sparse coding. Therefore, DDL is an
iterative optimization process that generates the optimized dictionary and the
optimized sparse code. Fig. 7 offers an intuitive representation of a density
map dictionary.

Fig. 6. A simple example shows the dictionary learning ideas. Only a dictionary
(A) and various sparse codes (X) are required to store. The data (Y ) can be
recovered from A and X .

Fig. 7. An example of the learned patterns in a dictionary from the training set
of density maps.

5.3 Adaptive Sparse Coding
When the dictionary is learned, we can adopt the OMP method to generate
a sparse code for each patch of the density maps. Directly applying OMP
to generate the sparse code will lead to the error appearance as shown
in Fig. 8(a). Since the valid eigenvalue number of the traditional OMP
method is fixed, the OMP coding is not accurate enough to present the
important information on the density map. The density map patch has
various forms, which cannot be expressed well with limited eigenvalues,
and the expression with a large number of eigenvalues will cause the sparse
code to be too large. Hence, we propose to use an adaptive sparse coding
(ASC) approach to adjust the eigenvalue number adaptively for different
forms of density map patch. ASC method guarantees the high accuracy of
sparse representation by optimizing the number of eigenvalues. The sparse
patch will be represented via less number of eigenvalues than the non-sparse
patch. ASC is inspired by Sadeghi et al. [45]. It is an improvement of the
OMP method through error optimization. ASC can achieve high accuracy
by using an adaptive number of eigenvalues. ASC has a good performance
on obtaining results of visual queries. Fig. 8(b) shows a better sparse coding
result than that of Fig. 8(a).

5.4 Pixel Chain DDL
The previously proposed DDL approach is designed for sparse coding of the
density map patch. In addition to density map, querying time-series data
from a certain spatial location is also an important part of a visual query
system. We assume that all density maps have a fixed number of pixels (e.g.,
1024×1024). We define the pixel in the same two-dimensional position on
the sequential density maps as a pixel chain, as shown in Fig. 9. Similar to
the proposed DDL, we cluster the pixel chains and select the representatives



(a) Without error optimization. (b) With error optimization.

Fig. 8. A result comparison of two sparse coding approaches. We enlarge the
details. Clearly, the result quality on the top is low, whereas the result quality
on the bottom is high.

to build the training set. By using dictionary learning, we can generate a
pixel chain dictionary. For each pixel chain, we calculate the sparse code.
Only the sparse code and the pixel chain dictionary are loaded in the visual
query system.

Fig. 9. An example of the pixel chain of the spatiotemporal data.

Fig. 10. An example of the spatial variation field between a pair of the adjacent
density maps.

5.5 Spatial Variation DDL
Visualizations of spatial variation have been discussed in many works, such
as StreamMap [26]. Based on the work of StreamMap, we generate the
spatial variation field for each pair of the adjacent density maps. Fig. 10
shows an example of the spatial variation field. Since we have found the
peaks of the frame in the PKDE approach, we can accelerate the variation
field generation of StreamMap [26]. The generated spatial variation field
will be converted to a direction map and an absolute map. The direction
map as shown in Fig. 11(a) stores the spatial variation angle ([0,359]) and
the variation-size map stores the absolute value ([0.0,1.0]) of the spatial
variation. The representation of an absolute map is similar to the density
map. We apply a dictionary learning method to compress the direction maps
and absolute maps. Only the sparse codes and two dictionaries are required
to load for the querying of the spatial variation information. Fig. 11 shows a
dictionary trained on patches from the direction map.

Finally, we summarize the DDL pipeline in Algorithm 1. The input of
DDL is various sequential density map data, such as DDDMMM. The output of
DDL is a dictionary (AAA) and sequential sparse codes (XXX). We believe the
sparse coding method is an effective data encoding method to support a
query on large numbers of continuously variable data. We evaluate the
performance of the proposed method in Section 8.

6 VISUAL QUERY

We load the sparse codes constructed in Section 5 before the visual query.
According to the time and space parameters involved in the query, the

(a) Direction map (b) Trained dictionary

Fig. 11. An example of a direction map and a dictionary trained on patches
from the direction map.

Algorithm 1 DDL algorithm
1: procedure DDL(DM)
2: T S← T SG(DM) . Training set generation.
3: A← Sampling(T S)
4: X ← 000
5: i← 0
6: while e > τ do . τ indicates the error goal.
7: X ′,A′← OMP(T S,A,X) . Orthogonal matching pursuit.
8: X ← X ′,A← A′

9: e =
N
∑

i=1
‖yi−Axi‖2

2 +λ
N
∑

i=1
‖xi‖1

10: end while
11: while i≤ n do . n indicates the number of density map patches.
12: Xi← ASC(DMPi,A) . Adaptive sparse coding
13: i← i+1
14: end while
15: return XXX = {X0,X1, ...,Xn}, A
16: end procedure

corresponding sparse codes are decoded to the approximate original data.
We address various interaction approaches to freely select multiple regions or
periods on the spatial map or timeline. Since the query result visualization is
an important part of a visual query system, we design special representations
to visualize the query results.

6.1 Query Definition
We define the query as an interactive operation with five input parameters,
such as query form, query type, query period, selection size, and key point.
Fig. 12 shows the query definition. For the spatiotemporal data, we define
two query forms to satisfy the query requirements from two perspectives:
temporal query and spatial query. The query types are defined as AVG, MAX,
MIN, and SUM. The query type can be extended according to the specific
requirement. The query period indicates the time range. The selection size
is defined to set the selection range on a geographical map. The key point
defines the sampling positions over the query region.

Fig. 12. Query definition. We define two forms of query operations. Spatial
query means the operation is applied on a geographical map. Temporal query
means the operation is applied on a time period.



6.2 Temporal Query
We define the query operation on the timeline view as the temporal query
(TQ). It is designed to query the sequential density maps according to the
time period. A real-time brushing operation is allowed on the timeline view.
We apply the dictionary learning of the density map patch for the temporal
query. The query input of TQ is a period of time. The brush interval can be
set by the user. The output of the temporal query is a statistical density map.
Statistical information includes the maximum value, the minimum value,
and the mean value of the density maps in a specified period. We directly
visualize the statistical density map over the geographical map to show the
query result.

6.3 Spatial Query
We define the query operation on the geographical map as the spatial query
(SQ). The query input of SQ is a series of geographical positions. Multiple
positions can be selected through a query operation on the geographical map.
The query operations include: brush, pointbypoint, lasso, and rectangle.
Brush will generate a brushing trajectory that includes a set of points. Points
are generated through evenly dividing the brushing trajectory. The brush-
based interactive operation helps users query and compare the evolution,
variation, and statistical information of the spatiotemporal data in an intuitive
way. For example, it is convenient when the querying regions are along coast-
lines or rivers on a geographical map. pointbypoint lets the user manually
select the key points by clicking on the area. Lasso and rectangle will create
a region where we will generate the key points through average sampling.
We define the average sampling parameter as avgsamp. avgsamp indicates the
interval of the key points. The selection of the avgsamp is related to the query
speed. For the SQ, we adopt the stream view and statistical bar to visualize
the query result. Since the spatial query requires the result in a whole period,
we apply Pixel Chain DDL to speed up the query performance.

6.4 Spatiotemporal Query
The spatial variations among a time period are difficult to explore on a
geographical map. Based on the Spatial Variation DDL discussed before,
we can load the variation data effectively when the query for the spatial
variations is required.

Fig. 13. Query result of our spatiotemporal query approach. An arrow indicates
the spatial variation direction, meanwhile the circle size outlines the variation
absolute value.

6.5 Query Result Visualization
According to the characteristics of the spatiotemporal data, we design three
visualization forms to visualize the query result.

Stream View. The stream view is a stream-based design to show the
data evolution in a period. We depict the query result vertically, as shown
in Fig. 16. All of the spatial chains in different timestamps are rendered as a
stream with a different color, where the stream width indicates the amplitude.
The color setting is based on three principles as follows: (a) warm color,
such as dark red, is chosen to render the continuously large streams; (b)
cold color, such as deep blue, is chosen to outline the continuously small
streams; (c) medial color, such as green, is chosen to outline the streams that
are continuously small. The contrast color usage follows the work of Kim et
al. [19].

Statistical Bar. Since the analysis of day-related and hour-related data
is frequently required in the visualization application, we design a new
statistical bar that can present the maximum and mean values. The spatial id
on the view of the statistical bar links to the key points on the geographical

map. In our experiments, we show the information about seven days of a
week and twelve hours of a day. Fig. 14 outlines two forms of statistical bars.
The center of the horizontal bar indicates the mean, and the width of the
horizontal bar means the maximum. The color setting principles are similar
to the stream view (Section 6.5).

Variation View. Fig. 13 shows the query result of our designed spa-
tiotemporal query approach. A red circle indicates an increasing variation,
whereas a cyan circle means a decreasing variation. The circle size presents
the variation absolute value.

Fig. 14. A description of the statistical bar visualization. (top) Statistical bar
for the day of the week. (bottom) Statistical bar for the hour of the day. Four
columns are related to four selected positions on a geographical map.

7 CASE STUDIES

The experiments are performed on a MacBook Pro with an Intel Core i7 CPU
and 16 GB RAM. We use the open-source libraries D3 [4] and Leaflet [25]
to provide interactions and visualize the query results. All density maps are
visualized through color mapping on the geographical map.

7.1 Air Pollution
To help users query the air pollution distribution, we apply our system
to a real air pollution dataset. This dataset involves the data of the air
quality index (AQI) in China. They were collected from aqicn.org over 75
days from April 14th, 2017, to June 27th, 2017. AQI data were monitored
at 3365 monitoring stations. Each record includes an AQI value and the
corresponding monitoring location. A high AQI means a bad air quality.
Nine hundred density maps were generated in advance through PKDE. Since
the air pollution monitoring stations are limited, it is significant to estimate
the air pollution in the regions without physical monitors. We adopt DDLVis
to visualize the air pollution information and query the potential polluted
regions from a temporal perspective and a spatial perspective.

DDLVis provides an interactive operation to compare the different AQI
distributions at two time periods as shown in Fig. 15(a-c). Fig. 15(a-b) shows
the query results following the MIN and AVG query type. When the query
type is changed to MAX, the places that have been very polluted over the
time period will be visualized, as shown in Fig. 15(c).

(a) Period selection through
MIN query.

(b) Period selection through
AVG query.

(c) Period selection through
MAX query.

Fig. 15. DDLVis is applied on an air pollution dataset.

We try to use the SQ to analyze the air pollution distribution from eastern
China to western China. Pixel Chain DDL supports the pollution distribution
data query in a high-speed way. We use a brush operation to draw a path



from Nanjing city to Chengdu city and obtain the result, as shown in Fig. 16.
Fig. 16 depicts that Nanjing and Chengdu cities have bad air pollution in the
selected period. The air quality of some regions, such as region Chengdu
in Fig. 16, was varying in a very large range over 75 days. Figure 22 shows
a stream information pair for the Pixel Chain DDL accuracy evaluation. The
result demonstrates that the sparse coding accuracy satisfies the requirements
of the visual query. We also apply the Spatial Variation DDL on AQI dataset
and visualize the spatial variation and evolution of four regions. Fig. 13
shows that the first region is often exposed to air pollution from the South.
Besides, the circle size indicates that the AQI variation is strong in this
region.

Fig. 16. Air pollution query result from eastern to western China.

7.2 Flight Noise
We found that sound from flights had a detrimental noise influence on the
people living near the airport. To help the residents avoid the noise, we
try to apply our system to explore the noise impact of air traffic. Since
the streaming trajectories from aircraft consist of high-density geographical
points, it is suitable to build the density map on the geographical map. Over
fifty days of flight trajectories near Shanghai Hongqiao Airport from Jan
12th, 2016, to Mar 15th, 2016, were collected from flightradar24.com.

Fig. 17. Statistical information of the flight noise amplitude.

We merge all the points of daily trajectories into a frame. We apply the
PKDE method to estimate the noise distribution. Different Gaussian kernel
sizes in the PKDE indicate the noise impact size. Then, we can generate the
corresponding density maps of the noise for each frame. Since it is difficult
to calculate the flight noise accurately, noise density maps are helpful to
visualize and query the noise impact.

By using DDLVis, much useful information can be explored. The view
for the temporal query can offer an overview of the flight noise as shown
in Fig. 17. Although Fig. 17 demonstrates that the flight noise after Feb. 13 is
greater than before, it is also necessary to query the flight noise information
on a spatial space. We adopt the spatial query and draw the key points
crossing the airport on the geographical map. Clearly, the residents near the
airport are affected by flight noise. Hence, understanding the specific areas
that will be affected by the airport is an unknown issue. We adopt DDLVis
to explore the temporal noise from east to west as shown in Fig. 18. It was
a significant finding that the affected regions to the west of the airport are
larger than the regions to the east of the airport. In addition, the query type
of SUM is interesting in this case. We calculate the summation of all the
density maps through the temporal query during all periods. We found that
the top three regions are affected less in the whole period. We believe that
the regions of A, B, and C are suitable for living with less influence from the
flight noise.

8 EVALUATION

To evaluate our approach, we applied it to a large-scale dataset called
Xingyun Map [33]. Xingyun Map is a dataset collected from the Ten-
cent map website, which presents the geo-locations of the map users. The
total number of user records per day is nearly 10 billion. We aggregated
the user locations per 5 minutes into a density map. Finally, we generated

Fig. 18. Spatial query from the west to the east.

Fig. 19. Temporal query using SUM type. A, B, and C are suitable for living
with less influence from the flight noise.

18,247 density maps (frames) to represent the data in 64 days. PKDE and
the dictionary learning is applied on the dataset before the query. When
the data space is 1024× 1024, the PKDE time cost for one data frame is
nearly 0.08s. The time cost of the dictionary learning is nearly 1.2s for a
representative density map (1024×1024).

8.1 Query Performance
DDLVis can support a real-time interactive query over the spatiotemporal
data. We evaluate the time cost of our visual query method. The resolution of
the query space is 1024×1024 on the display. The dataset for measurement
is the Xingyun Map. To the best of our knowledge, the real-time visual
query of the spatiotemporal data distribution has not been investigated be-
fore. HashedCubes [38] is the most relevant one. If the spatial resolution
of the cubes is small enough, HashedCubes is an approximation of density
estimation for a fixed bandwidth. Besides the time performance, we also
focus on the distribution query and a few special query forms such as the
spatiotemporal query. The generated density maps are estimated through
PKDE. Although the visual query pipelines of traditional work (e.g. Hashed-
Cubes) and our approach are different, we are trying to evaluate the time
cost in a closely same experimental condition.

Fig. 20. A pair of stream information instances for the DDL accuracy evaluation.
(top) Original stream information. (bottom) Stream information with sparse
coding.

We tested DDLVis and Hashedcubes on the same three datasets with
respectively 1,440 frames, 864 frames and 288 frames, using a set of 10,800
queries. Frames are randomly selected from the Xingyun datasets, and the
selection process avoids repetition. The size of the three datasets (number of
records) is respectively 241,894,250, 147,373,025 and 48,154,078. The
map is focused on one location and the same zoom level in all test cases. We
set avgsamp as 8 pixels when we apply rectangle query in DDLVis system.
Since HashedCubes is not designed for distribution query, no sampling



interval is applied. We apply rectangle query in HashedCubes system. The
rectangle is randomly selected in the range of query space. Results of four
types of queries shared by both systems were recorded, which are as follows:
1. region count, 2. day of the week, 3. hour of the day and 4. timeline.
We built Hashedcubes using the schema where spatial information is firstly
encoded, then day of the week, hour of the day as categorical information,
ending with a temporal dimension.

(a) Different query types (b) Different datasets

Fig. 21. Query performance results. (a) The latency of different query types
at the largest datasets with 1440 frames. (b) The latency of querying ”region
count” at different datasets.

Fig. 22. Memory usage of DDLVis compared with Hashedcubes.

Fig. 21(a) reveals different relations between the two systems about the
type of query and the latency. At each type of query, DDLVis outperforms
Hashedcubes. The latency of “timeline” is similar to that of “region count”,
and the latency of “day of the week” is similar to that of “hour of the day”,
while Hashedcubes shows an “increasing” trend along the dimension of the
query type. We assume this “increasing” trend was decided by the order of
dimensions when building Hashedcube, for the number of pivots increases
when subdividing records at each dimension. Fig. 21(b) shows the relation-
ship between query latency and the size of dataset. The two systems both
show a positive correlation. The overall performance of DDLVis is better
with lower latency and variance. The increasing rate of query latency of
DDLVis is larger than that of Hashedcubes, which may prove less scalability
on a larger dataset. Fig. 22 shows the memory costs of both systems on the
three datasets. DDLVis costs much less memory than Hashedcubes, which is
because we only keep sparse codes and dictionaries rather than information
of each record. We conclude that the DDL-based approach is suitable for a
large-scale query of spatiotemporal data distribution.

8.2 Compression Quality
Because sparse code is small, it is necessary to calculate the similarity
between the original density map and transformed sparse code. We adopt
the SSIM [54] method to evaluate the compression quality of the DDL
approach. SSIM considers the structure of two images; thus, it can represent
the difference between two data frames. SSIM is used to calculate the
similarity of two density maps: one is an original density map; the other is
a compressed density map using DDL. In our experiments, the calculated
average SSIM is 96.4%. This result indicates our proposed approach has
a high-quality coding performance. We also use SSIM to calculate the
similarity of two pixel chains. We set the stream view as the images for the
comparison. The average calculated similarity is 99.3% in our experiments.
Fig. 20 shows a stream information pair for the Pixel Chain DDL accuracy

Table 1. Average similarity comparisons of the different density estimation
approaches.

Methods K-means SKDE [26] PKDE
Benchmark 0.748 0.787 000...888000444

evaluation. The result demonstrates that the sparse coding accuracy satisfies
the requirements of the visual query.

8.3 PKDE Performance
To further evaluate the proposed PKDE method, we hired volunteers to
artificially generate 16 density maps and point frames. We developed a
painting tool. First, the volunteers paint the density map on the canvas by
themselves. Second, a point set is sampled on the density map using the
Perlin noise method [41], which is a well-known sampling method. The
generated 16 point sets and 16 density maps are the benchmarks for the
evaluation. In our evaluation, three strategies are applied on the 16 point
sets. Estimated density maps are compared with the density maps in the
benchmarks. Fig. 23(a) shows a generated colorful density map. Fig. 23(b-
d) shows an example of the comparison results of the different density
estimation strategies. We adopt SSIM [54] method to compare the similarity
between the benchmark and the density estimation result. Table 1 shows that
the PKDE result is most similar to the benchmark.

Fig. 23. An example of the result comparisons of different density estimation
strategies.

9 CONCLUSION

We outline a new framework for the real-time visual query of spatiotemporal
data. A temporal extraction of density features is addressed to aggregate
the spatiotemporal data into density maps. Based on the density maps, we
introduce a novel dictionary learning approach to compress the density map
and accelerate the data processing. We provide a pair of query approaches
and the representations to visualize and explore the query results. Our
experiments show that this system can support the real-time querying of
sparse spatiotemporal data.

Our system still has some limitations. First, our system does not perform
as well as traditional methods when processing queries with a very small
dataset. Second, using a single display to query the spatiotemporal data has
weaknesses since the 2D map for interaction occupies most of the display
thus the space for visualization is limited. A hybrid interaction, as shown
in the work of Kister et al. [21], seems to be a solution to visualize the data
through the combination of a large display and a mobile device. Third, the
current version of DDLVis also has limitations in addressing different levels
of detail of the spatiotemporal data because of density maps at different
levels of detail. It is possible to use a mixed visualization strategy using
DDLVis for high-level query, and traditional scatter plots or density maps
for low-level data exploration.

Sketch-based query interaction [8] is a direction to improve the perfor-
mance of DDLVis via a two-dimensional sketch query. Also, an approach
based on CNNs [22] has the potential to be used to further improve the
compression ratio of the density maps. The method based on spectral repre-
sentation [60] can further improve the effectiveness of sparse representation,
so it may be a potential direction. Because the purpose of feature maps of
CNNs is mainly to obtain image features. CNNs needs further improvement
before it can be used for density map compression. We plan to conduct the
experimental verification for the auto-encoders [43] approach to present the
context of spatiotemporal data in the future. Furthermore, we plan to design
visual query systems for line-based and region-based spatiotemporal data.

ACKNOWLEDGMENTS

The authors wish to acknowledge the support from NSFC under Grants (No.
61802128 and 62072183).



REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on
signal processing, 54(11):4311–4322, 2006.

[2] B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Dragicevic.
Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data.
IEEE Transactions on Visualization and Computer Graphics, 22(1):559–568,
2016.

[3] A. Bookstein, V. A. Kulyukin, and T. Raita. Generalized Hamming Distance.
Information Retrieval, 5(4):353–375, 2002.

[4] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301–2309,
2011.

[5] M. Brehmer, B. Lee, B. Bach, N. H. Riche, and T. Munzner. Timelines Revis-
ited: A Design Space and Considerations for Expressive Storytelling. IEEE
Transactions on Visualization and Computer Graphics, 22(1):449–458, 2016.

[6] O. Bryt and M. Elad. Compression of Facial Images Using the K-SVD Algo-
rithm. Journal of Visual Communication and Image Representation, 19(4):270–
282, 2008.

[7] A. Coates and A. Y. Ng. Learning Feature Representations with K-means. pp.
561–580, 2012.

[8] M. Correll and M. Gleicher. The Semantics of Sketch: Flexibility in Visual
Query Systems for Time Series Data. In Proceedings of IEEE Conference on
Visual Analytics Science and Technology (VAST), pp. 131–140, 2016.

[9] M. Derthick, J. Kolojejchick, and S. F. Roth. An Interactive Visual Query Envi-
ronment for Exploring Data. In Proceedings of 10th Annual ACM Symposium
on User Interface Software and Technology, pp. 189–198. ACM, 1997.

[10] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[11] M. Elad, M. A. Figueiredo, and Y. Ma. On the Role of Sparse and Redundant
Representations in Image Processing. Proceedings of the IEEE, 98(6):972–982,
2010.

[12] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A Density-based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In KDD, vol. 96,
pp. 226–231, 1996.

[13] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual Exploration
of Big Spatio-temporal Urban Data: A Study of New York City Taxi Trips.
IEEE Transactions on Visualization and Computer Graphics, 19(12):2149–2158,
2013.

[14] T. Guo, K. Feng, G. Cong, and Z. Bao. Efficient Selection of Geospatial Data
on Maps for Interactive and Visualized Exploration. In Proceedings of the 2018
International Conference on Management of Data, pp. 567–582. ACM, 2018.

[15] C. Hurter, O. Ersoy, and A. Telea. Graph Bundling by Kernel Density Estimation.
31(3pt1):865–874, 2012.

[16] S. Jänicke, C. Heine, and G. Scheuermann. Geotemco: Comparative visu-
alization of geospatial-temporal data with clutter removal based on dynamic
delaunay triangulations. In G. Csurka, M. Kraus, R. S. Laramee, P. Richard, and
J. Braz, eds., Computer Vision, Imaging and Computer Graphics. Theory and
Application, pp. 160–175. Springer, 2013.

[17] J. Johansson, P. Ljung, M. Jern, and M. Cooper. Revealing Structure within
Clustered Parallel Coordinates Displays. In Proceedings of IEEE Symposium on
Information Visualization, pp. 125–132, October 2005.

[18] F. Khelifi and J. Jiang. Perceptual Image Hashing based on Virtual Watermark
Detection. IEEE Transactions on Image Processing, 19(4):981–994, 2010.

[19] H.-R. Kim, M.-J. Yoo, H. Kang, and I.-K. Lee. Perceptually-based Color
Assignment. In Computer Graphics Forum, vol. 33, pp. 309–318, 2014.

[20] S. Kim, S. Jeong, I. Woo, Y. Jang, R. Maciejewski, and D. S. Ebert. Data
Flow Analysis and Visualization for Spatiotemporal Statistical Data without
Trajectory Information. IEEE Transactions on Visualization and Computer
Graphics, 24(3):1287–1300, 2018.

[21] U. Kister, K. Klamka, C. Tominski, and R. Dachselt. GraSp: Combining
Spatially-Aware Mobile Devices and a Display Wall for Graph Visualization
and Interaction. 2017.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems, pp. 1097–1105, 2012.

[23] M. Krstajic, E. Bertini, and D. Keim. Cloudlines: Compact Display of Event
Episodes in Multiple Time-series. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2432–2439, 2011.

[24] O. D. Lampe and H. Hauser. Interactive Visualization of Streaming Data with
Kernel Density Estimation. In Proceedings of 2011 IEEE Pacific Visualization
Symposium (PacificVis), pp. 171–178, 2011.

[25] Leaflet. http://leafletjs.com. 2013.
[26] C. Li, G. Baciu, and Y. Han. StreamMap: Smooth Dynamic Visualization

of High-Density Streaming Points. IEEE Transactions on Visualization and
Computer Graphics, 24(3):1381–1393, 2018.

[27] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for Real-time Ex-
ploration of Spatiotemporal Datasets. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2456–2465, 2013.

[28] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Querying of Big Data.
Computer Graphics Forum, 32(3):421–430, 2013.

[29] Y. Lu, M. Steptoe, S. Burke, H. Wang, J.-Y. Tsai, H. Davulcu, D. Montgomery,
S. R. Corman, and R. Maciejewski. Exploring evolving media discourse through
event cueing. IEEE Transactions on Visualization and Computer Graphics,
22(1):220–229, 2016.

[30] J. Lukasczyk, R. Maciejewski, C. Garth, and H. Hagen. Understanding hotspots:
A topological visual analytics approach. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems, p. 36.
ACM, 2015.

[31] R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouzzani,
W. S. Cleveland, S. J. Grannis, and D. S. Ebert. A visual analytics approach to
understanding spatiotemporal hotspots. IEEE Transactions on Visualization and
Computer Graphics, 16(2):205–220, 2010.

[32] J. MacQueen. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of
California Press, Berkeley, Calif., 1967.

[33] X. Map. http://xingyun.map.qq.com. 2013.
[34] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek. An overview of

jpeg-2000. In Proceedings of the Data Compression Conference, pp. 523–541.
IEEE, 2000.

[35] A. Mayorga and M. Gleicher. Splatterplots: Overcoming Overdraw in Scatter
plots. IEEE Transactions on Visualization and Computer Graphics, 19(9):1526–
38, Sept. 2013.

[36] H. Mei, W. Chen, Y. Wei, Y. Hu, S. Zhou, B. Lin, Y. Zhao, and J. Xia. RSATree:
Distribution-Aware Data Representation of Large-Scale Tabular Datasets for
Flexible Visual Query. IEEE Transactions on Visualization and Computer
Graphics, 26(1):1161–1171, 2020.

[37] F. Miranda, L. Lins, J. T. Klosowski, and C. T. Silva. Topkube: A Rank-aware
Data Cube for Real-time Exploration of Spatiotemporal Data. IEEE Transactions
on Visualization and Computer Graphics, 24(3):1394–1407, 2018.

[38] C. A. Pahins, S. A. Stephens, C. Scheidegger, and J. L. Comba. Hashedcubes:
Simple, Low Memory, Real-time Visual Exploration of Big Data. IEEE Trans-
actions on Visualization and Computer Graphics, 23(1):671–680, 2017.

[39] C. A. L. Pahins, N. Ferreira, and J. L. Comba. Real-time exploration of large
spatiotemporal datasets based on order statistics. IEEE Transactions on Visual-
ization and Computer Graphics, 26(11):3314–3326, 2020.

[40] V. Papyan, Y. Romano, and M. Elad. Convolutional Neural Networks Analyzed
via Convolutional Sparse Coding. The Journal of Machine Learning Research,
18(1):2887–2938, 2017.

[41] K. Perlin. Improving noise. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pp. 681–682, 2002.

[42] A. Perrot, R. Bourqui, N. Hanusse, F. Lalanne, and D. Auber. Large interactive
visualization of density functions on big data infrastructure. In 2015 IEEE 5th
Symposium on large Data Analysis and Visualization (lDAV), pp. 99–106. IEEE,
2015.

[43] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin. Variational
autoencoder for deep learning of images, labels and captions. In Advances in
neural information processing systems, pp. 2352–2360, 2016.

[44] A. Rodriguez and A. Laio. Clustering by Fast Search and Find of Density Peaks.
Science, 344(6191):1492–1496, 2014.

[45] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten. Dictionary Learning for
Sparse Representation: A Novel Approach. IEEE Signal Processing Letters,
20(12):1195–1198, 2013.

[46] R. Scheepens, N. Willems, N. Andrienko, N. Andrienko, N. Andrienko, and
J. J. V. Wijk. Composite Density Maps for Multivariate Trajectories. IEEE Trans-
actions on Visualization and Computer Graphics, 17(12):2518–2527, 2011.

[47] G. Shurkhovetskyy, N. Andrienko, G. Andrienko, and G. Fuchs. Data Abstrac-
tion for Visualizing Large Time Series. 37(1):125–144, 2018.

[48] B. W. Silverman. Density Estimation for Statistics and Data Analysis, vol. 26.
CRC press, 1986.

[49] A. Slingsby and E. Van Loon. Exploratory Visual Analysis for Animal Move-
ment Ecology. 35(3):471–480, 2016.

[50] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Transactions on information theory,
53(12):4655–4666, 2007.

[51] C. Turkay, A. Slingsby, H. Hauser, J. Wood, and J. Dykes. Attribute Signatures:
Dynamic Visual Summaries for Analyzing Multivariate Geographical Data.



IEEE Transactions on Visualization and Computer Graphics, 20(12):2033–2042,
2014.

[52] U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing,
17(4):395–416, 2007.

[53] G. Wang, J. Guo, M. Tang, J. F. de Queiroz Neto, C. Yau, A. Daghistani,
M. Karimzadeh, W. G. Aref, and D. S. Ebert. STULL: Unbiased Online Sam-
pling for Visual Exploration of Large Spatiotemporal Data. In 2020 IEEE
Conference on Visual Analytics Science and Technology (VAST), pp. 72–83.
IEEE, 2020.

[54] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality
Assessment: from Error Visibility to Structural Similarity. IEEE Trans. Image
Process., 13(4):600–612, 2004.

[55] N. Willems, H. van de Wetering, and J. J. van Wijk. Visualization of Vessel
Movements. In Proceedings of the 11th Eurographics / IEEE - VGTC Conference
on Visualization, pp. 959–966, 2009.

[56] K. Wongsuphasawat and B. Shneiderman. Finding Comparable Temporal
Categorical Records: A Similarity Measure with an Interactive Visualization. In
Proceedings of the IEEE Symposium on Visual Analytics Science and Technology
(VAST2009), pp. 27–34. IEEE, 2009.

[57] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image Super-resolution via Sparse
Representation. IEEE transactions on image processing, 19(11):2861–2873,
2010.

[58] Y. Yankelevsky and M. Elad. Structure-aware classification using supervised
dictionary learning. In Proceedings of 2017 IEEE International Conference on
the Acoustics, Speech and Signal Processing (ICASSP), pp. 4421–4425. IEEE,
2017.

[59] J. Zhao, X. Liu, C. Guo, Z. C. Qian, and Y. V. Chen. Phoenixmap: An Ab-
stract Approach to Visualize 2D Spatial Distributions. IEEE Transactions on
Visualization and Computer Graphics, 27(3):2000–2014, 2021.

[60] Y. Zhao, X. Luo, X. Lin, H. Wang, X. Kui, F. Zhou, J. Wang, Y. Chen, and
W. Chen. Visual analytics for electromagnetic situation awareness in radio
monitoring and management. IEEE Transactions on Visualization and Computer
Graphics, 26(1):590–600, 2019.


	Introduction
	Related Work
	Visual Query System
	Visual Encoding of Spatiotemporal Data
	Dictionary Learning

	System Overview
	Peak-Based Kernel Density Estimation
	Density Dictionary Learning
	Training Set Generation
	Dictionary Learning
	Adaptive Sparse Coding
	Pixel Chain DDL
	Spatial Variation DDL

	Visual Query
	Query Definition
	Temporal Query
	Spatial Query
	Spatiotemporal Query
	Query Result Visualization

	Case Studies
	Air Pollution
	Flight Noise

	Evaluation
	Query Performance
	Compression Quality
	PKDE Performance

	Conclusion

