
Smooth Animation of Structure Evolution in Time-Varying
Graphs with Pattern Matching

Yunzhe Wang
Department of Computing
The Hong Kong Polytechnic

University
csyzwang@comp.polyu.edu.hk

George Baciu∗
Department of Computing
The Hong Kong Polytechnic

University
csgeorge@polyu.edu.hk

Chenhui Li
Department of Computing
The Hong Kong Polytechnic

University
cscli@comp.polyu.edu.hk

ABSTRACT
Drawing a large graph into the limited display space often raises
visual clutter and overlapping problems. The complex structure
hinders the exploration of significant patterns of connections. For
time-varying graphs, it is difficult to reveal the evolution of struc-
tures. In this paper, we group nodes and links into partitions, where
objects within a partition are more closely related. Besides, parti-
tions maintain stable across time steps. The complex structure of a
partition is simplified by mapping to a pattern and the evolution
is exposed by comparing patterns of two consecutive time steps.
We created various visual designs to present different scenarios of
changes. In order to achieve a smooth animation of time-varying
graphs, we extract the graph layout at each time step from a super-
layout which is based on the super-graph and super-community.
The effectiveness of our approach is verified with two datasets, one
is a synthetic dataset, and the other is the DBLP dataset.

CCS CONCEPTS
•Human-centered computing→Visualization;Graph draw-
ings;

KEYWORDS
time-varying, graph visualization, simplification, structure pattern

1 INTRODUCTION
Complex time-varying graphs usually contain tremendous entities
and keep changing structures over time. It is difficult to gain signifi-
cant insights into the structure and its evolution. In visualization, re-
searchers tend to aggregate graph elements spatially or temporally.
On the spatial dimension, hierarchical methods [Noel and Jajodia
2004] collapse subgraphs to new single vertices. While in temporal

∗George Baciu is the corresponding author.

space, the granularity of time intervals is enlarged [Von Landes-
berger et al. 2016]. After aggregation, the size of visual elements
that need to be presented is reduced. Also, users can have a high-
level understanding of graph structures. In this paper, we facilitate
the exploration of the structure evolution in time-varying graphs
by dividing them into stable divisions.

Community detection methods divide graphs by clustering more
densely connected vertices. Relevant studies have been fully de-
veloped in static graphs [Blondel et al. 2008; Girvan and Newman
2002]. However, it remains challenging for time-varying graphs.
Because it would be very time-consuming if applying the detection
iteratively. In addition, we need to match corresponding communi-
ties across time steps [He et al. 2017]. To obtain divisions effectively,
we propose to conduct community detection on the super-graph
at a global level. Graphs at individual time steps are divided ac-
cording to the detection result. By doing so, we can achieve high
consistency and time efficiency and the animation outstands in
preserving users′mental map [Diehl et al. 2001].

Analysing graph structure is an important research area. We try
to reveal the structure evolution by investgating into partitions of
graphs. Sometimes, vertices get connected by obeying a certain
pattern. For example, in an egocentric network, an entity occupies
the leading place and others connect to it. Li et. al [2015] designed
several structure patterns and mapped a graph to the most resem-
blant one. Their work aims at exploring local patterns in massive
static graphs. Though the matched pattern only approximates the
actual structure, the matching procedure runs time-efficiently and
the visualization provides support for discerning a pattern of in-
terest. Inspired by their work, we implemented a similar idea to
time-varying graphs. The objective is to represent the structure
evolution with compact visual expressions. At the same time, we
exhibit significant structure patterns for users to explore. Patterns
are defined based on topologies that are prevalent in graph analy-
sis. We name the patterns chain, loop, clique, and egocentric. The
similarity between graphs and patterns is measured by either a
generic or customised algorithm. In this way, a most suited pattern
is assigned to the graph. Given the four patterns we designed, the
customised algorithm outperforms the generic one.

Taking time-efficiency and stability of visualization into consid-
eration, we obtain the super-community by carrying out detection
on the super-graph. Communities are regarded as meta-nodes and
the force-directed layout method yields their positions on the dis-
play. We use animation that collaborates with node-link diagrams
for visualization. Instead of detecting communities and computing
the layout iteratively, we extract partitions and layouts of each time
step from the super-community. Meanwhile, the smoothness of

animation is well achieved. Through a succinct visual design, users
can identify both global and local changes of the graph. Generally,
contributions of our work reflect in the following aspects:

• First of all, we define four structure patterns which are por-
traits of the underlying topology of graphs. Accordingly, we
introduce two matching methods. With the generic method,
users can flexibly append new patterns into the system.
• Successively, we provide compact visualization of the struc-
ture evolution. Users can compare and observe the changes
between consecutive time steps. We use intuitional visual
encodings to display diverse changes so that users can im-
mediately distinguish them.
• We simplify the complex structure by dividing graphs into
partitions. Partitions and layouts at each time steps are sub-
sets of the super-community and the super-layout. Hence,
our system involves less computation and abrupt changes
can be avoided in animation.

2 RELATEDWORK
2.1 Visualization of Time-varying Graphs
The primary goal in drawing time-varying graphs is to keep
readers′mental map, which means the graph layout should not
change abruptly. To decide the layout of static graphs, force-directed
approaches are widely used. An incremental approach by Frish-
man et al. [2004] obtained an initial layout by the force-directed
algorithm. Then it adjusted the layout when nodes are added or
removed. This approach proves to maintain a good visual stability.

There are mainly two ways to represent time in visulization, one
is animation and the other is timeline. Though timelines enable
users to compare arbitrary time steps, they are also criticized for
the bad scalability [Brehmer et al. 2016]. Animations map the time
stamps of a graph sequence into visualization time. Bach et al. [2014]
designed a visualization system called GraphDiaries for identifying
changes happened in animated node-link diagrams. If nodes perti-
nent to visual tasks are highlighted through the full time series of
the graph, then a more stable drawing provides little benefit. Feng
et al. [2012] achieved smooth animation by firstly generating the
initial graph layout of each time step from a super-graph [Diehl
et al. 2001]. Then they optimized the layout by fulfilling a few
constraints. Compared to timelines, animations convey more infor-
mation by embodying an unlimited number of time steps. Besides,
in animation, graph of one time step takes full use of the display,
while in timelines, multiple graphs share the display.

2.2 Visualize Group Structures
Assigning nodes or links into groups simplifies the general analysis
of large graphs. Objects within a group share similarities regarding
attributes or topology [Vehlow et al. 2017]. Community Detection
approaches aim at dividing nodes into communities so that intra-
community links are much denser than inter-community ones. Such
approaches involve a high computational cost, because the number
of communities is unknown and they may have different structures
and densities. The Girvan–Newman algorithm [Girvan and New-
man 2002] is widely used for its reasonable results. It is implemented
by removing links of high-betweenness centrality [Brandes 2001] in

each iteration and finally taking remaining groups of nodes as com-
munities. However, this method fails to handle large-scaled graphs.
The Louvain method [Blondel et al. 2008] is based on modularity
maximization. Modularity is a scalar value which measures the
density of links inside communities as compared to links between
communities. This method has succeeded in managing graphs of
sizes up to 100 million nodes and billions of links.

Vehlow et al. [2015] visualized the evolution of communities
by presenting the dynamic graph and community structures in a
single image. Consequently, users are supported to identify the
relationship between community evolution and topology changes
of the graph. In their design, a graph is depicted as a stack of
ordered rectangles, each denoting a community. The topology of
a community is drawn in the rectangle so that users can flexibly
track the connection of a specific node. However, due to the limit
of the display space, not too many time steps can be presented.

Sometimes, users seek for specific graph topologies. Dunne and
Shneiderman [2013] defined three different patterns called fan, con-
nector and clique respectively. They search for these patterns and
represent them with glyphs. The graph representation is largely
simplified for visual exploration. Different from their work, we as-
sign an approximate pattern to a partition, rather than exhaustively
search the patterns in the whole graph.

3 PROBLEM STATEMENT
First of all, we give definitions of the time-varying graph, as well
as several pertinent terminologies.

Definition 3.1. Time-Varying Graph: A time-varying graph
can be defined as a sequence of ordered static graphs, GT =
{G1,G2, . . . ,Gt }, where t is the number of all time steps. At time
step i (1 ≤ i ≤ t), Gi = (Vi ,Ei), in which Vi is a set of nodes and
Ei is a set of links between nodes, Ei ⊆ Vi ×Vi . At any time step,
nodes and links might be added or removed.

Definition 3.2. Super-graph: This is a concept introduced by
Diehl et al. [2001]. Suppose GS = (VS ,ES) is the super-graph of a
time-varying graphGT .VS = V1 ∪V2 ∪ . . .∪Vt and ES = E1 ∪ E2 ∪
. . . ∪ Et .

Definition 3.3. Super-community: We conduct community
detection on the super-graph. The set of communities de-
tected is called super-community which is denoted as CS =
{com1, com2, . . . , comk }, k is the number of communites.

Definition 3.4. Graph partition: We decompose each Gi into
partitions so that Gi = Pi1 ∪ Pi2 ∪ . . . ∪ Pik , and nodes in Pi j are
defined as

{
v |v ∈ Vi ,v ∈ comj

}
, 1 ≤ j ≤ k . Partitions Pia and Pib

are connected if
{
∃xy |x ∈ Pia ,y ∈ Pib ,xy ∈ Ei

}
. Some partitions

might be empty, hence the number of partitions is no larger than k .

Definition 3.5. Super-layout: LS = L1 ∪ L2 ∪ . . . ∪ Lt . LS is
the force-directed layout of {com1, com2, . . . , comk } if each commu-
nity is represented by a meta-node. Li is the layout of non-empty
partitions at time i and the position of Pi j and comj are the same.

4 METHOD
In this section, we explain the details of our method. As shown
in Figure 1, our work follows a general routine. Above all, we need

to decide graph partitions at each time step. This is achieved by
community detection on the super-graph. It is worth noting that
during the whole process, detection only needs to be executed
once. Based on Definition 3.4, partitions of Gi are Pi1, Pi2, . . . , Pik .
Moreover, the graph layout at all time steps is decided by the super-
layout which is the force-directed layout of meta-nodes denoting
communities in super-graph. The community detection approach
we adopted is the Louvain algorithm [Blondel et al. 2008], and the
force-directed layout method is the one proposed by Dwyer [Dwyer
2009]. These two methods run quite fast and possess good scala-
bility. We implement the simplification of structures by mapping
them to corresponding patterns. Hence, visual comparability can
be achieved.

Figure 1: Routine of our work. The input is a time-varying
graph which consists of a sequence of static graphs. Arrows
indicate the actions we take in order. Rectangles give the re-
sults of actions. Nodes in L1,L2, . . . ,Lt represent partitions.

4.1 Pattern Design
Patterns imply the topology types of graphs. With a pattern, we
can easily tell how entities are connected (e. g., the connections are
sparse or dense). The portrait of a pattern is very simple, similar
to a skeleton of the graph. But it reflects fundamental topological
properties. We design patterns according to a few graph strucures
that researchers might concern about.

Particularly, we define four types of patterns, as shown in Fig-
ure 2: (a) chain: nodes connect to each other linearly, but the head
and tail do not connect. (b) loop: nodes connect to each other one
by one and constitute a closed circle. (c) clique: all pairs of nodes
are fully connected. (d) egocentric: one node locates in the center
and all others connect to it.

Nodes in the chain pattern connect in a sequence, which is likely
to reflect the order information. The loop pattern contains a closed
path and it also has sparse density. Conversely, nodes are densely
connected in the clique pattern. Besides, the degree distribution in a
clique is relatively flat. The egocentric network has been extensively
explored [Heer and Boyd 2005]. One node dominates the whole
network and it connects to all other nodes. This kind of pattern may
lead us to some important nodes. In consideration of compactness
and aesthetics, we use five nodes as the basis of patterns. Provided
that three nodes are used, we cannot distinguish the loop and clique
patterns. Given four nodes, they cannot illustrate dense connections

Figure 2: The first row lists the four patterns: (a) chain, (b)
loop, (c) clique and (d) egocentric. (e), (f), (g) and (h) display
variants of the four patterns respectively.

as well as five nodes do. Thus, theminimal requirement is five nodes.
More nodes are acceptable, but too many nodes may raise visual
clutter problems.

Patterns are designed for the sake of finding topologies of interest.
Users are allowed to define new patterns and integrate them into
the system. For instance, Figure 2 also lists some variants of the four
patterns. Any one of them can be a substitute for the corresponding
pattern.

4.2 Pattern Matching
In the literature of sociology, the morphology of networks vary a lot.
Usually, they do not appear in a form as inerratic as that of patterns
in Figure 2. Thus, we need to analyze the networks and map them
to the most resemblant pattern. In this section, we introduce two
matching methods, one is generic, and the other is customised. Both
methods are adaptive to the network size. Note that though we use
five nodes to illustrate patterns, it does not mean that the matched
network has a small size.

The first method is based on the Netsimile algorithm [Berlingerio
et al. 2012]. This method is generic and is used when users add
new patterns. The second approach is customised only for patterns
defined in subsection 4.1. It achieves higher accuracy in the context
of this paper.

The generic method returns a similarity score (score ∈ [0, 1],
0 means totally different, 1 means exactly the same) between the
pattern and the input network. After comparing with all patterns,
we select the one which produces the highest similarity score. How-
ever, if all similarity scores are smaller than a threshold (i. e., 0.5),
then the network mismatches with all patterns. Hence, it would be
assigned an undefined pattern.

First of all, we adjust the number of nodes in patterns. For in-
stance, if the network has 100 nodes, then the graph induced by a
chain pattern will be constructed by 100 nodes. Each node is repre-
sented by a vector which contains values of a few structural features.
Graphs are described by feature matrices. Suppose the network has
n nodes, and we extract k features from each node, then the feature

matrix can be defined as: M =



f11 f12 ... f1k
f21 f22 ... f2k
...

fn1 fn2 ... fnk



, where fi j

is the jth feature of node i . A matrix produces a signature vector V
and the similarity score equals to the Canberra Distance between

two signature vectors,Distance(V ,V ′) =
∑k
i=1

���Vi−V
′
i
���

Vi+V ′i
. The distance

measure is sensitive to small changes near zero [Berlingerio et al.
2012].

The customised approach is implemented with a few decisions.
Suppose the number of nodes in the network is n. A primary step
is to check if there exists a cycle in it. If cycles are detected, we
count the number of nodes CycG in the largest cycle. If it exceeds
thresholdcyc , the network can be initially inferred to have a loop
or clique pattern. Otherwise, the pattern can be either chain or
egocentric. The loop and clique patterns are further distinguished
by measuring the graph density DenG = 2m

n(n−1) , wherem and n are
the number of links and nodes respectively. If DenG is larger than
thresholdcli , then the pattern is clique. Otherwise, if DenG is less
than thresholdloo , then the graph has a loop pattern.

To decide between the chain and egocentric patterns, we cal-
culate the graph depth DepG , which equals to the length of the
longest path between nodes. If DepG is larger than thresholdcha ,
the pattern is chain. If the maximum node degree DeдG exceeds
thresholdeдo , the graph is likely to have a egocentric pattern. Algo-
rithm 1 gives the details. The cycle detection and the calculation of
graph depth are realized by a depth-first search.

At individual time steps, graphs induced by Pi1, Pi2, . . . , Pik in
Gi are input into the matching algorithm so that we get correspond-
ing patterns of each partition. In our work, large graphs are divided
into partitions to obtain manageable sizes. We then project com-
plex and diverse structures of partitions to few visual comparable
patterns. The visual clutter and overlapping problems are largely
reduced. Due to the simplicity of patterns, users can clearly see
the distribution of different types of structures. Besides, it becomes
easier to identify partitions of similar structures and monitor the
evolution of the whole network.

4.3 Smooth Animation
During the transition between time steps, stable visualizations
let users concentrate on fundamental changes of structures. We
improve the extent of smoothness from two aspects, one is the
graph layout and the other is the pattern transformation.

In our design, a node depicts a partition of the graph. For Gi ,
partitions Pi1, Pi2, . . . , Pik are obtained by checking individual
entities′ community id in the super-community. Some partitions
might be empty. We can see from Figure 1 that community detec-
tion which implements the division only needs to be executed once.
If divisions have to be executed for t times, it would cost a long time.
Though Pi1, Pi2, . . . , Pik might differ from actual communities in
Gi , nodes in Pi j still maintain relatively dense connections, because
they used to belong to the same group in the super-community.

We only display non-empty partitions on the screen. If we layout
the graph separately at each time step, it would be time-consuming
and also the layout would be dramatically different. According
to Definition 3.5, Pi j and comj have same positions. Hence, for
two time steps m and n, Pmj and Pnj stay the same place. If no
dramatic changes happen, the division of the network would be
very alike over time steps. The layout can keep stable because same
partitions stay in the same positions. As shown in Figure 1, the
layout calculation also needs for one-time execution.

Algorithm 1: Customised algorithm of matching a graph with
one of the chain, loop, clique, and egocentric patterns. If none
of the patterns is matched, return undefined.
G = (V ,E) // initiate a graph
Function Pattern_Matching (G)

CycG=DetectCycle(G); // detect cycles in G, if detected,
return the size of the largest cycle, otherwise return False

if CycG > thresholdcyc then
DenG=CalcDensity(G); // calculate the graph density
if DenG > thresholdcli then

return “Clique Pattern”;
else

if DenG < thresholdloo then
return “Loop Pattern”;

else
return “Undefined”;

end
end

else
DeдG=MaxDegree(G); // calculate the maximum
degree of nodes

DepG=CalcDepth(G); // calculate the longest path
starting from any node of the graph

if DeдG > thresholdeдo then
return “Egocentric Pattern”;

else
if DepG > thresholdcha then

return “Chain Pattern”;
else

return “Undefined”;
end

end
end

end

In Figure 3 (b), the layout of consecutive time steps are extracted
from the super-layout, while in Figure 3(a), the layout is computed
separately. With the super-layout, we can achieve much more stable
visualizations.

Except for the layout, we also consider the smoothness of pattern
transitions. The pattern of a partition is embeded into its corre-
sponding node. We want the pattern to change smoothly if it is
different at two neighboring time steps. To achieve this goal, we
make a little transformation to patterns. Details are given in sub-
section 5.1.

5 VISUAL DESIGN
Our animated visualization is designed for the purpose of assisting
users to perform the following visual tasks, which mainly relate to
partitions and patterns:
• Q1: How many partitions does the graph have at each time
step? How does the number change over time? Is there any
reason that could explain the change?
• Q2: How is the stability of partitions? Does any of them exist
for continuous time steps? What contributes to the stability?

Figure 3: Comparison of layouts generatedwith andwithout
the super-layout. Arrow indicates the time order. (a) Layouts
are generated by iteratively applying the force-directed algo-
rithm. (b) The layout of each time step is extracted from the
super-layout.

• Q3: For those durable partitions, do they also keep a steady
structure? How does the structure change? Which pattern
appears most frequently in a partition? At which time step,
does the structure change?
• Q4: At a specific time step, what is the distribution of pat-
terns? Which one occupies the most? How many partitions
have a different structure, while how many others preserve
their previous structure?

5.1 Pattern Transformation
To let the users have a straightforward understanding of the under-
lying structure, the pattern representation is embeded concentri-
cally into the node which indicates a partition. As we mentioned
in subsection 4.3, visual representations of patterns should proceed
to each other smoothly. Therefore, we need to do a little transfor-
mation to patterns. Above all, we bend the chain pattern, so that all
patterns can be illustrated by a pentagon where the five vertices are
fixed and only edges change. Figure 4 shows how the loop pattern
smoothly evolves to other patterns. For example, if the target pat-
tern is a chain, only the bottom edge needs to be removed. For the
egocentric pattern, there would be edges that appear and disappear
simultaneously. Evolutions between other pairs of patterns are im-
plemented in a similar way. In any case, the solid frames of patterns
would bring a fluent visual perception during the animation.

Figure 4: The loop pattern smoothly moves to all other pat-
terns. Emerging edges are marked by blue halos and orange
halos represent disappearing edges.

5.2 Evolution Representation
Because in animation, time steps are displayed one by one, users
can barely do comparisons between them and see the difference.
To alleviate this problem, we present two patterns of a partition
together, one is for the previous time step, and the other is for
the current time step. In this way, users can distinctly see changes
through visual comparisons. Considering the compactness, we place
a smaller and concentric circle in a node, then fit the previous
pattern into this circle. As shown in Figure 5, previous patterns
locate in smaller circles. Also, we assume that current patterns are
more important, thus they should occupy more space. It is worth
noting that though the clique and egocentric patterns are partly
covered by the inner area, we can still clearly recognize them.

Figure 5: Pattern comparison of two consecutive time steps.
The current pattern is placed in the outer circle, while the
previous one locates in the inner circle. (a), (b), (c) and (d)
have the current pattern as chain, loop, clique and egocentric
respectively. In this example, we draw a loop as the previous
pattern. In reality, patterns depend on matching results.

Because of the graph evolution, multiple changes might hap-
pen at each time step. For example, new partitions appear and old
partitions disappear. Even for durable partitions, their sizes might
expand or shrink, not to mention the structure changes. To reveal
these changes, we take advantage of diverse visual encodings which
are listed in Table 1. Partitions are represented by circles with a
default blue filling. We also make the filling translucent in case that
patterns become too vague to see.

We take seven scenarios of changes into consideration. If a par-
tition newly appears at the current time step, then it must not exist
in the last time step. Hence, we fill the inner circle with white color.
Conversely, if a partition disappears, users are still allowed to view
its previous pattern, but the outer circle is filled with white color.
If the inner or outer circle is empty, it suggests that the pattern
is undefined. For partitions whose sizes are increased, they have a
thick and solid border line of the circle. While for those that are
decreased, the border line is thin and dashed. If the size remains the
same, then we use a thin and solid line. However, even if the size
does not change, the members or the structure of a partition might
vary. Though users can discover structure changes by comparing
patterns in outer and inner circles, it is not feasible for them to
check all partitions. Therefore, it is necessary to visually inform
users which part of the network involves structural changes. In
our design, we use the red or green color to fill inner circles, corre-
sponding to situations that structures are changed or unchanged.
In general, we only use colors and shapes to differentiate changes,
and users will not be overwhelmed by the visual encodings.

Table 1: Visual encodings of changes that might happen to a partition. The appearance and disappearance of a partition is
revealed by the white filling. Changes of the size are distinguished by the border line as solid or dashed, thin or thick. The
inner area is filled with red or green color, if the partition’s structure is changed or not.

Type of
Changes appear disappear expand shrink same size structure

changed
structure
unchanged

Visual
Encoding

6 USE CASE
We experimented with a synthetic dataset and the DBLP
dataset [DBL 2017] to show the effectiveness of our method. The
effectiveness reflects on two aspects, one is the accuracy of the
pattern matching algorithm, and the other is how effectively our
visual design can help users to accomplish the visual tasks. In this
paper, visual designs are implemented with D3.js [Bostock et al.
2011].

6.1 Example 1
The accuracy of our pattern matching approaches, especially the
customised one, is verified by a synthetic dataset. Graphs in the
dataset are drawn manually so that their structures can be con-
trolled. We judge the patterns of these graphs by observation, and
label them with chain, loop, clique, egocentric, or undefined. In order
to keep the reliability of judgement, we avoid to adopt complex
graphs whose patterns are difficult to be observed by naked eyes.

This synthetic dataset is utilized as the benchmark of the pattern
matching algorithm. The samples row of Table 2 lists 20 out of the
total 50 graphs. These samples come in the form of different sizes
and structures. The label row gives the observed type of patterns.
GPM refers to the generic method, and CPM is the customised
method. If the matching result is different from the label, we think
that the method fails in this case.

CPM is implemented by Algorithm 1, and we need to set values
for a few thresholds. Suppose the number of nodes in a partition is
represented by n = |V |. Initially, four patterns fall into two branches
by thresholdcyc , which is the number of nodes in the largest cycle.
We set its value to n

2 , whichmeans at least half nodes of the partition
composes the largest cycle. For the first branch of the algorithm, if
the edge density exceeds thresholdcli = 0.7, then we infer that the
pattern is clique. Otherwise, if the density is less than thresholdloo =
0.3, the inferred pattern is loop. For the second branch, either chain
or egocentric is selected by calculating the maximum node degree
and the longest path between nodes. IfDeдG > thresholdeдo , where
thresholdeдo = 0.7n, the algorithm ends with a egocentric pattern.
It implies that there exists a node which connects to at least 70%
other nodes in the partition. If the algorithm returns a chain pattern,
DepG must be greater than thresholdcha = 0.6n. We tested different
values for parameters and the current setting achieves highest
accuracy on the dataset.

Table 2 shows the matching results of GPM and CPM. Compare
the results with corresponding labels, we find that CPM can obtain
a higher accuracy. Among the all 50 samples, CPM has an accuracy
up to 82%, while the accuracy of GPM reaches to 56%.

6.2 Example 2
To present the visual effectiveness of our design, we experiment
with the DBLP dataset [DBL 2017]. The objective is to help users to
accomplish the visual tasks proposed in section 5. We extracted the
coauthorship data of a researcher over 15 years, and each year is
a time step. The data of a year constructs an egocentric network,
where the researcher is the ego and nodes that directly connect
to the ego are called alter. In this example, we also consider the
relationships between alters. There are about 640 authors and 3800
coauthorships involved in 15 years.

Figure 6(a) shows the super-graph of 15 time steps. After com-
munity detection, we get the super-community, which is shown
in Figure 6(b). It is the basis of partition and layout extractions.

Figure 7 shows snapshots of the network at three years. Despite
the size change of partitions, we can observe that the animation is
quite smooth, because the locations of partitions are fixed. Besides,
each time step has similar components of partitions, which means
nodes are not frequently added or removed from the nework. To
have a clear observation, we only show patterns of partition 0, 1,
2, 4, 8, and 9. The partition id is placed at the node center. There
are about 10 partitions in each year, and their sizes are relatively
stable. For example, partition 1, 4, 8 always have lager sizes than
others (Q1, Q2). Hence, we can say that the overall membership
of the network does not change too much in these three years.
However, it does not mean that the relationships between members
stay the same. The structural changes are especially obvious in
local areas. In our design, red color of the inner circle denotes
the change of structures. In all three years, there exist partitions
that encounter structural changes. In year 2007, the topology of
partition 4 turns from chain to egocentric. Also, compared to year
2006, its size becomes smaller, which can be seen from the dashed
border (Q3). If the pattern of a partition is undefined, we leave
the inner or outer circle of the node as empty. In year 2005, the
pattern of partition 1 is egocentric, while in year 2006 and 2007,
its pattern is undefined. Except for those dynamic partitions, some
others have very solid structures, and partition 0 is one of them. It
has an egocentric topology all the time. After investigation, we found
that the author who acts as an ego belongs to partition 0. As we
explained, the ego dominates in the network, and all other objects
connect to it. Therefore, partition 0 always keeps the egocentric
pattern. We can also discover some emerging nodes by the white
filling of the inner circle, such as partition 2 in year 2006. In this
example, four pre-defined patterns appear in different partitions,
and their distributions seem random (Q4), excluding partition 0.

Table 2: Pattern matching results of the generic method (GMM) and the customized method(CMM). The ‘samples’ row gives
the node-link representation of graphs. These graphs are the input to pattern matching algorithms. The ‘label’ row contains
pattern labels that are marked by observation. The ‘GPM’ and ‘CPM’ rows show the outcome of GPM and CPM algorithms.

01 02 03 04 05 06 07 08 09 10

samples

label string ring undefined star undefined ring star dense star undefined
GPM string dense undefined star undefined dense dense undefined star string
CPM string ring undefined star undefined star dense undefined undefined undefined

11 12 13 14 15 16 17 18 19 20

samples

label string star string ring undefined dense dense star ring star
GPM dense star string dense star dense dense star dense star
CPM string star string ring undefined undefined dense string ring star

Because, the ego and alters always compose an egocentric network.
However, relationships between alters are uncertain.

(a) (b)

Figure 6: DBLP network. (a) Super-graph of 15 time steps.
Each node indicates an author. (b) Super-community and
super-layout. Each node denotes a community. We decide
the partitions and layouts of all time steps based on this fig-
ure.

6.3 Discussion
When dealing with large data sets, focusing on the sub-sets can
largely relieve the difficulty of analysis. For time-varying graphs,
the sub-set can be obtained from both the temporal dimension and
the spatial dimension. If data is uniformly divided along the tem-
poral dimension, we can get various time granularity. Namely, the
time step can be a year, a month or a day. Aggregating multiple time
steps into a larger time granularity (e. g., aggregating the hourly
data into daily data) allows us to take a longer time period into
consideration. In this paper, we tend to group data in the spatial
dimension. For each time step, we desire to simplify the structure
of the graph. Therefore, community detection approach is applied
to cluster graph nodes into communities where nodes are highly
connected. The graph is separated into sub-graphs according to

link densities, which is a type of the topology property. However,
we can also group nodes or links with respect to their attributes.
Take the social network as an example, nodes that represent users
can be divided into two groups with different genders. In the first
example, we try to test the reliability of the pattern matching al-
gorithm. However, expanding the volume of the benchmark data
set and covering more graphs with diverse topologies may better
reveal the applicability. Besides, with more benchmark samples, we
can improve the algorithm as well as its parameters. Our approach
has quite good scalability and time-efficiency, because we decide
all partitions and layouts at a global scale. Operations of aggre-
gating nodes and producing layouts only need to be conducted
once, rather than doing repeated calculations at each time step.
Method proposed in this paper works under the premise that the
time-varying graph data has been given. Hence, it is ill-suited to be
used in online visualizations.

7 CONCLUSION
In this paper, we implemented the smooth animation for exhibit-
ing the structure evolutions of time-varying graphs. Users are sup-
ported to view both global and local structure changes. We achieved
the consistency of graph layout by extracting partitions from the
super-community. The complex structures of graphs become vi-
sually comparable, because we project them to simple patterns.
Patterns represent topological properties of underlying graphs in-
duced by partitions. It is convenient to visually search for partitions
of similar structures and also identify changes that occur to a spe-
cific partition. For future work, we plan to improve the current
visual design by experimenting with more datasets. In addtion, we
want to apply the basic idea of this paper on multivariate time-
varying graphs so that entities can be clustered by their attributes
instead of topological properties.

Figure 7: Snapshots of the animation at three time steps. The overall structure remains stable, while local structures keep
changing. Only patterns of partitions 0, 1, 2, 4, 8, and 9 are shown. Rectangles and texts explain typical changes of partitions.
prv_ptn means the previous pattern, and cnt_ptn is the current pattern.

ACKNOWLEDGMENTS
The authors would like to acknowledge the partial support of IGRF
PolyU 152142/15E and Project 4-ZZFF from the Department of
Computing, The Hong Kong Polytechnic University.

REFERENCES
2017. DBLP. (2017). http://dblp.uni-trier.de/xml/
Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. 2014. GraphDiaries: ani-

mated transitions andtemporal navigation for dynamic networks. IEEE Transactions
on Visualization and Computer Graphics 20, 5 (2014), 740–754.

Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos. 2012.
NetSimile: a scalable approach to size-independent network similarity. arXiv
preprint arXiv:1209.2684 (2012).

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. 2011. D3 data-driven documents.
IEEE transactions on visualization and computer graphics 17, 12 (2011), 2301–2309.

Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of mathe-
matical sociology 25, 2 (2001), 163–177.

Matthew Brehmer, Bongshin Lee, Benjamin Bach, Nathalie Henry Riche, and Tamara
Munzner. 2016. Timelines Revisited: A Design Space and Considerations for Ex-
pressive Storytelling. IEEE Transactions on Visualization and Computer Graphics
(TVCG, Proceedings of InfoVis 2015) 22, 1 (2016), 449–458.

Stephan Diehl, Carsten Görg, and Andreas Kerren. 2001. Preserving the mental map
using foresighted layout. In Data Visualization 2001. Springer, 175–184.

Cody Dunne and Ben Shneiderman. 2013. Motif simplification: improving network
visualization readability with fan, connector, and clique glyphs. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM, 3247–3256.

Tim Dwyer. 2009. Scalable, versatile and simple constrained graph layout. In Computer
Graphics Forum, Vol. 28. Wiley Online Library, 991–998.

Kun-Chuan Feng, Chaoli Wang, Han-Wei Shen, and Tong-Yee Lee. 2012. Coherent time-
varying graph drawing with multifocus+ context interaction. IEEE Transactions on
Visualization and Computer Graphics 18, 8 (2012), 1330–1342.

Yaniv Frishman and Ayellet Tal. 2004. Dynamic drawing of clustered graphs. In
Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on. IEEE, 191–198.

Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and
biological networks. Proceedings of the national academy of sciences 99, 12 (2002),
7821–7826.

Jialin He, Duanbing Chen, Chongjing Sun, Yan Fu, and Wenjun Li. 2017. Efficient
stepwise detection of communities in temporal networks. Physica A: Statistical
Mechanics and its Applications 469 (2017), 438–446.

Jeffrey Heer and Danah Boyd. 2005. Vizster: Visualizing online social networks. In
Information Visualization, 2005. INFOVIS 2005. IEEE Symposium on. IEEE, 32–39.

Chenhui Li, George Baciu, and Yunzhe Wang. 2015. ModulGraph: Modularity-based
Visualization of Massive Graphs. In SIGGRAPH Asia 2015 Visualization in High
Performance Computing (SA ’15). 11:1–11:4.

Steven Noel and Sushil Jajodia. 2004. Managing attack graph complexity through visual
hierarchical aggregation. In Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security. ACM, 109–118.

Corinna Vehlow, Fabian Beck, Patrick Auwärter, and DanielWeiskopf. 2015. Visualizing
the evolution of communities in dynamic graphs. In Computer Graphics Forum,
Vol. 34. Wiley Online Library, 277–288.

Corinna Vehlow, Fabian Beck, and Daniel Weiskopf. 2017. Visualizing group structures
in graphs: A survey. In Computer Graphics Forum, Vol. 36. Wiley Online Library,
201–225.

Tatiana Von Landesberger, Felix Brodkorb, Philipp Roskosch, Natalia Andrienko, Gen-
nady Andrienko, and Andreas Kerren. 2016. Mobilitygraphs: Visual analysis of mass
mobility dynamics via spatio-temporal graphs and clustering. IEEE transactions on
visualization and computer graphics 22, 1 (2016), 11–20.

http://dblp.uni-trier.de/xml/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Visualization of Time-varying Graphs
	2.2 Visualize Group Structures

	3 Problem Statement
	4 Method
	4.1 Pattern Design
	4.2 Pattern Matching
	4.3 Smooth Animation

	5 Visual Design
	5.1 Pattern Transformation
	5.2 Evolution Representation

	6 Use Case
	6.1 Example 1
	6.2 Example 2
	6.3 Discussion

	7 Conclusion
	Acknowledgments
	References

