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Figure 1: The interface of our system consists of (a) Data menu. Scatter plot and heatmap are provided for displaying the the distribution of
data. (b) Query menu. Users can retrieve data at specific time, or enable the free selection mode to query an AOI (Area Of Interest). (c) The
Details menu allows users to change parameters, view details of AOIs and refer the color legend. (d) Map view of the current time step. (e)
In the Layout menu, users can adjust positions of details.

Abstract
Using tremendous geo-textual data collected from social media applications, we facilitate the analysis of region functions. By
extracting semantics from textual properties, we aim at classifying geographical locations in terms of their functional types.
Hence, we train a classification model with the Support Vector Machine, and apply it to aggregated word embeddings to predict
the function of spots. We highly cooperate with techniques in graph analysis. Firstly, regions are segmented based on a latent
graph. Then, we propose an adaptive layout solution to deal with situations of multi-AOI queries. The generated layout and
interactive metaphor provide convenience for observation and comparison. Experiments are conducted with the YFCC100M
dataset to prove the effectiveness of our system.

CCS Concepts
•Human-centered computing → Visual analytics;

1. Introduction

The interplay between human activities and dynamics of regions af-
fect decisions of various issues, including urban planning, commer-
cial development and maintenance of social order. Regions such as
food court, CBD and residential communities provide specific fa-

cilities so that people within them tend to perform similar type of
activities.

Functional division provides a legible understanding of the city
composition. Analysts gain insights into the geographical distribu-
tion and the influence of various functional regions. Some regions
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are highly dynamic. Their territories might expand or shrink, and
the inner functions even change. Normally, on-spot investigation
is not practical. Most of the existing work explores human move-
ments to divide regions. However, mobility data are typically ob-
tained from transportation tools like taxi and metro, which cannot
provide a full coverage of focal areas. Besides, the interpretation of
region functions still relies on prior knowledge.

Recently, the geo-textual data burst with the prevalence of social
media. On photo-sharing platforms, users can record geo-positions
(i.e., spots) where photos were taken. They are allowed to attach
descriptive texts which imply contexts of the spots. We propose
to cluster spots using a graph-based method. Each cluster is re-
garded as a region. After inspecting all inner spots, we find that
some regions have explicit functions, while others possess a mix-
ture of functions. The contributions of our work are as follows,

• We reduce the feature diversity of geo-locations by classifiying
semantics extracted from geo-textual data. Semantics are repre-
sented by aggregating embeddings of representative words.
• Regions are segmented by maximizing the modularity of a latent

graph. The graph integrates both spatial and functional proxim-
ity. Therefore, closely located spots with similar context consti-
tute a region.
• Instead of creating a separate view, we place AOI details on the

map and optimize their positions. By mapping AOIs and details
to nodes in a graph, force layout method can be applied to ensure
that the detail position is close to the corresponding AOI and all
other details of remaining AOIs simultaneously.

2. Related Work

Region segmentation can be achieved by recognizing different pat-
terns of human activities. People tend to perform similarly within
a region. Cranshaw et al. [CSHS12] counted the visiting frequency
of a location by all users, and locations of similar visiting patterns
are placed into the same region. This work lacks the interpretation
of region functions. Main roads can be treated as a reference for
segmentation. Yuan et al. [YZX∗15] used POI statistics and a topic
model to infer region functions. However, their method cannot fur-
ther divide a large region, due to the limitation of road network.
MobiSeg [WZC∗17] supports dynamic updating of region segmen-
tation, which is based on a tessellation procedure. Data from multi-
ple sources are fused to mitigate the sparsity problem. Interestingly,
both work of Wu et al. [WZC∗17] and Yuan et al. [YZX∗15] pro-
posed analogies to the context of textual analysis, while our work
directly manipulates the textual data.

Extensive research has been conducted to uncover the func-
tions of regions, also known as the land use. Previous studies took
remote-sensing satellite images as input and get results at a coarse
level. Voorde et al. [VdVJC11] classified areas in terms of residen-
tial, commercial, service and green space. To attain fine-grained
categories, supervised classification methods as adopted by Pan
et al. [PQW∗13] need to be applied. We carried out a similar work,
except that their training set contains regions and manually labeled
functions, while our training set consists of spot-function pairs. We
believe that it is more reasonable to classify spots, because some
regions may have serveral functions involved. Hence, it is not easy
to decide a specific function to label them.

In natural language processing, word embedding aims at con-
verting a word to a numeric vector for further operations like
classification and regression. Short text semantics may reflect fea-
tures of geo-locations and also help to support situational assess-
ment [MJR∗11].

Many visual analytic systems for geographical data prefer to
put details that users query in a separate view, mostly because
they want to provide organized views to facilitate comparisons.
Wu et al. [WZC∗17] place the mobility feature vectors of local
districts in a detail view. However, users have to switch between
two views to map their queries and corresponding details. Yang
et al. [YDGM17] use a leader line to connect locations with visu-
alizations. To decide optimal locations for billboards, multiple so-
lutions of the target area are provided in SmartAdP [LWL∗17]. In
this work, we place details next to queried areas to relieve users
from mapping.

3. Method

3.1. Data Format

We conducted experiments on the YFCC100m dataset [TSF∗16].
Especially, we focus on data of New York City, and we aggregate
data by half of a year. For each data item, we filtered 9 attributes,
(user_id, time, upload_time, title, description, tag, longitute, lati-
tute, url), where time is when the photo was taken. title, description
and tag describe content in the photo. Original texts of the three
attributes might involve random characters and stop words, so we
clean them and only preserve meaningful English words. In the end,
a spot i associates with a list of words, Wi = {w1,w2, . . . ,wk}. lon-
gitute, latitute give the position where the photo was taken. We can
access the photo through the url attribute.

3.2. Spot Semantics

The function of a region is revealed by investigating the character-
istics of its inner spots. We get spot (e.g., i) features by analyzing
semantics of the corresponding word list (e.g., Wi). Hence, we can
deduce if the place is famous for food, tourism, or commerce. First
of all, we adopt Word2Vec [MCC∗14] to project words into a vec-
tor space. The distributed representations [MSC∗13] generated by
Word2Vec embed rich context information. For training, we input
a corpus of 3 million words. Finally, a word w j can be represented
by a 300-dimensional vector, v j = [ f 1, f 2, . . . , f 300].

As a spot might associate with a list of words, its semantics Si
can be described by aggregating vectors of words in Wi.

Si = g([t1, t2, . . . , tk]


v1
v2
. . .
vk

), (1)

where g(·) is an aggregation operator, which can be min/max,
or mean of each dimension in word vectors [DBVCDD16]. In
this work, we adopt the max operator. Each vector (i.e., v j) is
weighted by the TF-IDF value (i.e., t j) of word (i.e., w j), t j =

n ji
∑k nk j

× log |P|
|{i:w j∈pi}| , where n ji denotes the frequency that w j oc-

curs in Wi; ∑k nki is the sum of all word frequencies in Wi; |P| is the
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number of posts in one time step, and the denominator in IDF is the
number of posts which contain the word w j.

Our ultimate goal is to classify spots into different types. There-
fore, we trained a classification model which is based on SVM and
a RBF kernel. In the training set, each spot is manually labeled
with an appropriate type. In this work, we have six types [residen-
tial, commercial, transportation, food, education, entertainment].
Namely, spot i can be represented by [Si,Ti] in the training set,
where Ti is one of the six types. Functions of all other spots are
then predicted by the classification model.

3.3. Region Segmentation

To divide a whole area into regions, we hope to find spots that are
both closely located and are of similar semantics. We construct a
graph G in which a spot connects to its k Nearest Neighbors(kNN)
according to their haversine distances. The connection weight Ei j =

Si·S j
‖Si‖‖S j‖ is the cosine distance between semantic vectors of two end
spots i and j, which reflects the semantic similarity.

Then, we conduct Community Detection on G by maximizing
the modularity [RSC∗10], which is defined as

Q =
1

2m ∑
uv

[
Auv−

kukv

2m

]
susv +1

2
, (2)

where u and v are nodes in the graph; A is the adjacency matrix; ku
is the degree of node u and s indicates the membership of a node
to community. In this way, spots are separated into disjoint com-
munities. We take the geographical coverage of a community as a
region, and the boundary is regarded as the concave hull of spots.
The function type of a region is decided according to statistics of
inner spots. Details are given in Section 4.

3.4. Visualization

To let users fully explore the functional regions, our analytic system
is required to provide following utilities: (1) showing the distribu-
tion of spots, (2) allowing free query on both spatial and tempo-
ral dimensions, (3) reducing the diversity of semantics and project
them to comprehensive visual space, and (4) facilitating visual
comparisons between region territories and statistics. Here, we em-
phasize three significant aspects of our visual design.

Firstly, for the benefit of aesthetic perception [CCW∗16] and
easy comparison, we convert concave polygons to conjoint hexagon
cells. Since original polygons are in irregular shapes, it is difficult
to visually compare the size of different regions. After conversion,
the region coverage can be denoted by the number of hexagon cells
that it contains, because all cells are in uniform size. As shown in
Figure 5, we spread a hexagon grid onto the focal area. Then, Scan-
line method [WREE67] is used to check all cells in the grid. By ap-
plying the ray casting method [Rot82], we detect cells intersected
with polygons.

Secondly, users are allowed to freely select an Area Of Inter-
est(AOI). By clicking the AOI border, a scalable metaphor which
encodes temporal details will display on the map. As shown in Fig-
ure 2, each ring consists of categorical data at one time step. From
the inside out, rings are placed following a chronological order.

Generally, space is uniformly divided by hidden axes into 6 sec-
tions. Arcs of a certain category are aligned along the axis. The arc
length l is calculated by l = Nt ∗ (1/6∗2π∗ r)/N. Nt is the number
of spots of the type and N is the total number of spots. r denotes the
radius of the ring. To reveal the evolution, an arc is encompassed
with a black border, if Nt/N becomes larger. We also preserve a
circular space in the center to represent popular keywords of the
dominant function.The black dot shows the existence of explicit re-
gions. The arc length from the axis to the dot indicates the ratio of
spots belonging to the explicit region.

Figure 2: A multi-ring metaphor shows temporal details of an AOI.
Each ring shows data of one time step (e.g., the dashed ring denotes
the third step). Hidden axes equally divide space into 6 sections,
corresponding to 6 function types. The length of an arc indicates
the proportion of spots of a certain type. If the proportion grows,
the arc is highlighted with a black border. A black dots implies an
explicit region. Keywords of the most dominant function locate in
the central circular space.

Thirdly, when users select several AOIs and compare their de-
tails, we utilize force layout algorithms [Dwy09] to decide the
layout of details. We abstract AOIs and details as nodes, which
are depicted by their smallest enclosing circles. We want a de-
tail metaphor to stay as close as possible to the related AOI, so
that users do not need to take a long eye movement for mapping.
Besides, all details should get close to facilitate the comparison.
Hence, we connect each AOI with the corresponding details, and
all details are fully connected. As AOIs are fixed, the force layout
algorithm outputs optimal positions of details.

4. Experiment

To evaluate our system, we retrieve all posts in New York city dur-
ing 2009 to 2014. Time interval is set to half a year. Users might
take several photos at a spot and no textual infomation added. Re-
sults in this section are based on data in the first half of year 2013,
where 10406 identical spots contribute to region segmentation.

The interface contains five parts, as shown in Fig. 1. Figure 3
displays the spot distribution in two ways. Clicking a spot allows
users to access the photo. Heatmap helps users to locate a potential
AOI by density. We also found that explicit regions are more likely
to lie in high density areas.

Each spot is connected to its 10 nearest neighbors. Figure 4(a)
presents the resulted graph. Communities are detected on such a
graph and they delimit by bounding spots of a community with a
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(a) (b)

Figure 3: Partial distribution of data in the first half of year 2013
in NYC. (a) In the scatter plot, spots are filled with different col-
ors to show their functional types after classification. (b) Heatmap
signifies high density areas with warmer colors.

concave polygon, as shown in Fig. 4(b). The average number of
spots at all time steps is 15978, and the average time of community
detection is 0.6802 seconds. A region is explicit if over 70% of
spots have the same function. However, as shown in Fig.5, only a
few of them are explicit. It implies that many regions in NYC have
no dominant function and they integrate with multiple functions. In
explicit regions, only one type dominates. For instance, R1 in Fig.5
turns out to be the Metropolitan Museum of Art, which is defined
as education related.

(a) (b)

Figure 4: Cluster spots based on kNN graph. (a) Graph con-
structed by connecting spots with its 10NN neighbors. (b) Com-
munities are delimited by concave boundaries.

In this work, the width of hexagon cells is 100 meters. In Fig. 5,
we convert all explicit regions into combinations of hexagon cells.
In NYC, many regions are commercial related (i.e., regions filled
with orange). In our definition, all themes about shopping, busi-
ness, finance are categorized as commercial. Most of these regions
locate in the center of NYC. After conversion, regions close to each
other merge together, such as R2 in Fig. 5. Actually, we can see that
R2 stretches along the Fifth Avenue, which is known as one of the
most expensive shopping streets in the world.

Two cases in Fig. 6 show how our system can adaptively place
details on the map. Users can get gid of one-to-one mappings be-
tween two separate views. Because a detail metaphor is placed
next to the related AOI. All metaphors stay as close as possible to
facilitate comparisons between different AOIs. When users hover
around, all arcs at the same time step will be highlighted.

Figure 5: Convert concave polygons to hexagon cells. Polygons
represent explicit regions, based on results of community detection.
By applying the ScanLine and ray casting methods, all cells inter-
sected with the polygon will be filled with the same color.

(a) (b)

Figure 6: Given positions of AOIs selected by users, our system can
adaptively put detail views around them. Sub-figures in the top-left
corner show thumbnails of the layout. Grey nodes and white nodes
denote AOIs and details respectively. Five AOIs (a) far from each
other. (b) close to each other.

5. Conclusions

In this work, we segment regions by clustering similar spots in
terms of semantics of corresponding textual data. To decide if a
region has an explicit function, we inspect all inner spots. In our vi-
sual system, users can observe the overall distribution of all explicit
regions, or they can query an AOI and view the temporal evolution.
However, there still exist several open issues. For example, the clas-
sification accuracy of textual semantics needs to be improved. For
the future work, we can calibrate the accuracy by analyzing image
contents, which are especially useful when no meaningful textual
data are available. Another issue is that the adaptive visual mapping
is not scalable enough and we now assume that users will not query
more than 10 AOIs at one time. Also, we need to conduct user stud-
ies to evaluate the performance of our visual analytic system.
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