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Fig. 1. A definition of GenerativeMap. We design a general pipeline for visualization and exploration of the dynamic density map. The
whole pipeline is composed of three modules in the definition, and the complete process is described in Section 3.

Abstract—The density map is widely used for data sampling, time-varying detection, ensemble representation, etc. The visualization
of dynamic evolution is a challenging task when exploring spatiotemporal data. Many approaches have been provided to explore
the variation of data patterns over time, which commonly need multiple parameters and preprocessing works. Image generation is a
well-known topic in deep learning, and a variety of generating models have been promoted in recent years. In this paper, we introduce
a general pipeline called GenerativeMap to extract dynamics of density maps by generating interpolation information. First, a trained
generative model comprises an important part of our approach, which can generate nonlinear and natural results by implementing a
few parameters. Second, a visual presentation is proposed to show the density change, which is combined with the level of detail and
blue noise sampling for a better visual effect. Third, for dynamic visualization of large-scale density maps, we extend this approach to
show the evolution in regions of interest, which costs less to overcome the drawback of the learning-based generative model. We
demonstrate our method on different types of cases, and we evaluate and compare the approach from multiple aspects. The results
help identify the effectiveness of our approach and confirm its applicability in different scenarios.

Index Terms—Density map, deep learning, spatiotemporal data, generative model

1 INTRODUCTION

The spatiotemporal datasets collected by sensors have become larger
and cover more research fields in recent years. Exploring the dynamic
of data is a long-term challenge; the collected spatiotemporal data
are often discrete and static, and we can obtain one series of states in
the scenario through visualization. In traditional work, users can ana-
lyze the distribution and time-varying patterns based on data features.
However, to find more details by observing these data, the dynamic
process is important, and a natural representation of data movements
helps users to understand the relationship between states. Furthermore,
many existing spatiotemporal data lack certain parts of records, and the
interpolation approach can help to fill the record gaps.

The density map is a simple presentation and available for many
types of data. The application examples contain data mapping in mete-
orology, movement of flow in oceanography, geographical distribution
of people location, etc. Currently, researchers apply this technology to
detect and track patterns from the ensemble dataset, which is a collec-
tion of spatio-temporal results [42]. The density map is also valuable
in the simulation field and is often combined with fluid simulation or
data sampling. However, the density map is vague, and it is difficult
to analyze the features of the image by classical image processing
methods. The density map often consists of a large number of data
points, and the final visual effect shows the data cluster, which means
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that the generated rules are often hidden in the formation process. For
these reasons, it is meaningful and necessary to explore dynamics on
the density maps.

Figure 2 describes the issue that we want to address. First, density
maps can be manually created by some rules. The process of artificial
creation is given in Figure 2(a), which serves as the simulation and
visualization. Can we guess the probable change process if we only
know a few rules? Second, some researchers generate a large number of
visualizations with scientific data, which often occurs with many types
of research [38, 48]. Figure 2(b) shows that researchers want to know
the continuous process, although there is less context information. How
can we describe the possible change in the data? Third, as shown in Fig-
ure 2(c), large images are used to contain large-scale information, while
users only focus on certain parts (we call these boxed images) [35].
What happens in these parts that we focus on when other parts contain
less information? In different domains, there are many works to solve
these problems. However, the complex model and costly computer
implementations are limitations of related approaches, and a simple
general method can help solve these problems.

Compared with previous methods, we take advantage of generative
models. Generative models provide many novel solutions for data
generation in recent years and show excellent performance regarding
nonlinear and self-learning. As two major categories of generative
models, the variational autoencoder (VAE) [22] and generative adver-
sarial networks (GANs) [16] have both shown advantages. The encoder
provides a mapping relationship between the image and code, which
enables users to establish the feature space. GANs are a popular model
for generating high-resolution and photorealistic images, and there are
many improved models for different tasks. In our work, we introduce a
GAN framework to implement the smooth morphing of density maps,
and the approach needs fewer parameters without any human involve-
ment. A known drawback of GANs is that the generating performance



Fig. 2. Explanation of problems scenarios that may arise. The three
parts are typical applications of density map evolution, they are the main
motivation of our work. The details are introduced in Section 1.

is low for large images, and it is usually computationally complex and
time consuming. As an improvement, for the region of interest (ROI),
we apply image fusion to solve the problem. Another important work
is the information visualization of movements, which helps users to
correctly identify the change or trend of the dynamic data. A typical
method is vector field representation, and the results are often shown by
points, lines, and textures. We improve the visual quality and present
the direction of a field by adopting blue noise sampling. The technol-
ogy overcomes the visually disturbing aliasing artifacts and is better
defined to our perception. This approach only needs a few parameters
to adjust to different applications. For providing a more usable visual
experience, we improve the algorithm with the level of detail (LOD).
The final result shows a smooth and user-friendly representation.

Our approach can be combined with many methods of image pro-
cessing and graphics, providing a novel pipeline that we call Gener-
ativeMap. The method aims to visualize the dynamic change of two
density maps in a convenient form. GenerativeMap is not meant to
replace the dynamic analysis method in other domain fields; rather,
it is more of a complementary method for these works, particularly
for cases where the data are missing or the state is too uncertain to
estimate. Crucially, this method is an attempt to improve visualization
with deep learning, and the pipeline can be extended by continuous
development of generative models. To achieve a generic technique, we
simplified the operation by setting as few user parameters as possible.
With traditional approaches, users need to change many parameters and
the framework to deal with different tasks. In our work, we introduce
several technologies to overcome these disadvantages, and users just
need to replace the datasets if the trained model is not suitable. As
shown in the experimental section, we apply the proposed approaches
to the artificial datasets, eddy datasets, and location-based datasets,
which are all based on the density map. The cases verify that Gen-
erativeMap is a general pipeline that can extract the dynamics of the
density map effectively, and the results are smooth and continuous. In
our work, the visual effect and generality are the important points of
the work. Our main contributions are summarized as follows:

A novel pipeline for exploring the dynamic of a density map: A
general pipeline can be applied to design several tools, combined with
advantages of deep learning and visualization, such that the results help
users to identify dynamic evolution in different scenarios effectively.

A generative model for extracting the dynamics from two dis-
crete images: An improved generative model is promoted to compute
the probable dynamic change of images, which is available for many
types of datasets. To employ GANs in the large image, we further
combine Poisson blending to improve the visual effect, which avoids
time-consuming data loading.

A sampling method for presenting distribution change: To iden-
tify the distribution of the density and the dynamic trend of evolution,
on the basis of blue noise, the proposed sampling method is combined

with LOD, which can enhance visual perception particularly for ROI.

2 RELATED WORK

Visualization of a dynamic density map is an area in which extracting
data features have mostly been implemented by visual analysis. Users
can employ their methods to compute the evolution process or forecast
potential states, and domain experts help developers to analyze tasks
and cases. These kinds of extracted work are often built based on
physical or mathematical models, which focus on the accuracy and
explanation of the results. To obtain the interpolation of two density
maps, the work presented in this paper is related to three broad topics:
1) spatiotemporal dynamic extraction, 2) realistic image generation,
and 3) movement field visualization.

2.1 Spatiotemporal Data Extraction
In recent years, a large number of spatiotemporal data are produced and
collected, particularly in fields such as meteorology, oceanography, and
transportation. As classical tasks, the extraction, dynamics and fusion
of ensemble datasets are all topics that have been researched [33]. The
topology methods can extract the time-dependent vector fields [18].
These types of methods can also be extended by other scene-related
approaches that can be widely used to solve problems such as detection
and tracking [39]. Similar methods have contributed solutions for the
movement analysis of ensemble dataset, which has been verified by
many experiments [13,28]. These cases show that applications currently
exist that can partly extract the change process of spatiotemporal data.

In addition to the feature-based methods above, Ayan et al [2]
proposed a visualization method to analyze the weather ensembles.
Distance-based approaches and the projection transform were also used
to meet this requirement in recent years, and the similarity measure and
the dimensionality reduction are the core steps in these works [17, 51].
In the traditional gap-filling field, researchers attempt to extract the
nonlinear spatio-temporal patterns with a data-driven method such as
neural network [34]. Nowadays, the deep learning approach can make
a general model available for more scenarios [23] according to the
intersection of different disciplines.

2.2 Generative Learning Model
Deep learning has made great advances in developing generative mod-
els, which can transform data between a simple latent distribution and
a complex distribution. Three common generative learning models are
GANs, VAE and the flow-based model. GANs are used to generate real-
istic high-quality images by discriminating the random fake distribution
from the real distribution of training datasets [16]. However, the latent
distribution is assumed as random in GANs; this characteristic makes
GANs unstable, and the high-resolution image generation is a challenge
for GANs. VAE is a framework that encodes images as a definitive
latent vector space [22]. The outstanding feature of the method is that it
takes the target image as a posterior distribution, although the classical
VAE can only obtain approximate results. The flow-based model is a
mathematically based method, and it has solved image generation by
data space mapping [11]. The related idea can generate natural and
high-definition results; however, its computational cost is high.

In fact, deep learning is usually used for interpolating discrete den-
sity maps. The results proved that linear interpolation in latent space
will lead to linear change generation of features [32, 45]. Other impor-
tant research focused on how the interpolation methods influence the
continuous change. Piotr et al. [3] tried many experiments and con-
cluded that the linear interpolation could present enough features when
the data are low-dimensional. Taking advantage of VAE and GAN, the
hybrid model can encode images as definite vectors distributions and
generate high-resolution images. Typical hybrid models are VAEGAN,
ALI and BiGAN [12, 14, 25]. Our work is based on encoding ability
and interpolation validity of these type deep learning models.

2.3 Movement Field Visualization
There has been much visualization research to present density move-
ment. In previous work on scientific visualization, points, lines, and
textures often represent vector fields [4]. The information can be clearly



Fig. 3. The structure of our improved BiGAN model.(a) The framework of network; (b) The interpolation of images; (c) The structure of encoder; (d)
The structure of decoder.

indicated in a suitable glyph, and then, the results can indicate the evolu-
tion process or the relationship among datasets [10, 41]. For analyzing
spatiotemporal data, describing the varying process of events is a com-
mon task. Inspired by flow visualization, novel visual methods help
users to identify the flow direction of information based on relating
models [21, 46]. All these experiments determined the meaning of
extracting the dynamic change of data. The image method has attracted
more attention in recent years, and the spatial dimensions can be trans-
formed to show states and movements [6]. This is an important ability
currently because data collections are often discrete, and a probable
reference can help users infer more information without data.

The ensemble movement description and forecast are promoted with
the big data collection [27, 29] to improve the work above. Uncertain
visualization in these domains confirms that a probable data inference
is meaningful for experts, which is also an important motivation of
our research. Blue noise is widely applied in dynamic sampling and
stippling patterns since uneven distributions are encountered, and it can
avoid aliasing artifacts [47]. The technology can help users identify
multiple classes and spatial positions of samples by extending the
original methods [9, 43], the results have worked well for improving
visual effects and domain problems. The related visualization work also
confirms that the glyph, e.g. arrow, can present the change trend [30].

3 GENERATIVEMAP PIPELINE

Most visualization methods of dynamic data combine feature analysis
and physical modeling, and these works often contain requirements
analysis and clear tasks from domain experts. Such ideas have proven to
be available for special tasks in many works. However, such extracted
data variation needs a large number of prework steps and has a complex
data preprocess, and users commonly need to set many parameters. In
addition, most evolution estimation methods are designed for special
tasks, it is difficult to apply an existing method into other scenarios.
Furthermore, the traditional pixel-based image processing approach has
a few limitations, particularly for the target that moves a great distance
or crosses with multiple source kernels.

In this paper, we propose GenerativeMap to show the morphing
between two density maps, which extract dynamic features by the
generative model. Image interpolation is usually used to reason whether
model learned relevances and representations, rather than remembering
sharps as discussed in the works [1, 32, 45]. The related theories and
experiments are the basis of our work. The results show that the learned
space has smooth transitions. Walking in the latent space will result in
the semantic changes. Compared with the most of deep learning works,
we need a controllable image interpolation approach, since many GANs
models generate samples randomly. As we introduced in Section 2.2,
the encoder and decoder can help model to construct the relationship
between training sample and latent vector. An ideal model should get
two selected density map as inputs, and generate a series of smooth and
continuous transition samples as outputs.

We transform visualization images into inputs of the generative
model. Since parts of the initial visualization scenarios are not density
maps, we design a density map tool. Users can use the tool to transform
the real-world visualization scenarios into density maps. Training deep

learning model is another important pre-work. We seriously consider
how to create suitable training dataset for learning general dynamic
features. To make the model generate smooth and continuous samples,
we propose a special dataset creation method in Section 4.1.

Figure 1 shows the overview of the pipeline, and we consider Gener-
ativeMap as a general method that can be used in multiple scenarios,
as referred to in Section 1. In the first part of GenerativeMap, users
choose two discrete frames at two noncontinuous times as the inputs of
the module. These visualization results are presented as density maps
by the density map tool. Users can upload special existing density maps
as inputs. For a special domain application, the model can be trained
better with special training datasets, which is not the focus of our work.

The second part is a simple and effective generative model, which
is the core part of the pipeline. Smooth image transition relies on
continuous latent vectors interpolation. The trained encoder could
encode two input images into two definite distribution in vector form.
Linear interpolations of the vector distributions will be decoded as
linear output samples. We further improve the performance of the
model by designing modules of the network. The model can process
larger images and show more details. The modification of modules can
be seen in Section 4.2.

It is not always natural when playing out interpolated samples di-
rectly, additional image processing methods are necessary for some
complex conditions. High-resolution images, less information, and
uneven small change, these are all weaknesses of deep learning. The
high-resolution image generation is a challenge for deep learning mod-
els, so we propose to use an image fusion approach to solve the problem.
Since the interpolations are discrete and the regions are small parts
of the whole image, the transition between interpolations may not be
remarkable in some conditions. To show the change clearly, we cal-
culate the color gradient of images by diffusion model. Inspired by
variation field visualization, the direction glyph can be used to repre-
sent the gradient change. For showing clear uneven changes, transition
presentation is optimized by an improved sampling method based on a
blue noise approach.

To simplify the procedure and explore a generic method, our work
combines deep learning and image processing with visualization, pro-
viding an easy-to-use and comprehensive approach. We describe the
details in Section 4.2 and 4.3.

4 METHOD DESCRIPTION

To train a general deep learning model to explore dynamic patterns of
density maps, it is important to create available datasets. The property
of samples in training data should contain different sizes, shapes, and
time intervals, and they should also provide smooth and continuous
dynamic information. As a visualization system, we want to balance
the conciseness and computational capabilities and to introduce as few
interactions as possible. The dynamic change may be difficult to be
identified, particularly when there are slight changes and noises. We
enhance the visual effect to improve our system by using blending, field
representation, and sampling. The next parts introduce how to apply
these technologies to implement a general framework. For conveniently
explaining our methods, we define some symbols as listed in Table 1.



Table 1. Symbol definitions

Symbol Description

x1,x2
x1,x2 represent the two density maps are the input of our
deep learning model.

z1,z2
z1,z2 are vectors distributions of x1,x2, which are encoded
by encoder of our model.

Fn
Fn illustrates the interpolations of our output, n means
the nth samples of the continuous interpolations.

Gn
Gn describes the ground truth images, n means the nth
image in the series of ground truth.

(a) Interpolation of original BiGAN

(b) Interpolation of Mp-GAN

Fig. 4. We attempt employing the same data with the original BiGAN and
our Mp-GAN, and it easily shows that the result of the latter would be
better.

4.1 Dataset Generation
The dataset generation is an important step to obtain a useful deep
learning model, since the model will learn our expected features from
data. There are no existing reliable datasets for density map morph-
ing. Initially, considering that the density map is based on the kernel
density estimate (KDE) [5], we created datasets by filling images with
pixels, where the pixels follow Gaussian distributions. According to
the obtained results, the model can learn the Gaussian shape well and
generates a series of similar figures, which demonstrates the feasibility
of this idea. However, the model cannot learn the dynamic change
since the samples in training datasets are independent. The ideal model
should learn natural and random distributions that contain smooth and
continuous features.

Perlin noise (PN) is an effective algorithm that is widely used in
creating and simulating natural scenes in the virtual world [31]. It starts
with random pixels in a 2D space, and the noise generates pseudoran-
dom gradient vectors for every pixel. The quality of generating samples
is controlled by the randomly generated seeds, the Gaussian fuzzy sets
and smooth interpolation functions. The formulations of PN are as
follows:

T (t) = αt5−β t4 + γt3

Sν
n = T (gν

0 −gν
n )

I(x,y,w) = x(1−w)+ y ·w

∆(gn) = (g0−gn) ·P[gn](g0 = (x,y),n = 1,2,3,4)

Θ(g0) = I(I(∆(g1),∆(g2),Sx
1), I(∆(g3),∆(g4),Sx

1),S
y
1)

(1)

where T (t) is a function that generates nonlinear movement, and α , β ,
and γ are all hyper parameters. t indicates the arbitrary value. g0 means
the current position of the pixel. g1,g2,g3, and g4 are the vertexes of
the seperated space grid. Sν

n means the smooth weight between g0
and gn along ν direction. I(x,y,w) represents the interpolation method
between x and y, which is influenced by w. ∆(gn) is the composed
gradient of gn and P[gn] means a gradient vector random selected from
a finite number of precomputed gradient vectors. Θ(g0) is the actual
movement of the pixel g0. Gaussian fuzzy can reduce the additional

(a) Connection

(b) Shift

(c) Fusion

Fig. 5. The generated series shows the multiple types of results with our
model. According to the change process of start-end frames, we simply
classify the generative form as three types.

visual noise.
We can get the static PN images by steps above, which contain

smooth and natural shapes. However, the ideal model should generate
a series of continuous and smooth interpolations to describe the transi-
tion process of two discrete density maps, which means that the deep
learning model can learn the relationship between two density maps
from the training datasets. Inspired by the related work [50], we use the
neural network to extract expected continuous features from keyframes.
The keyframes are from the dataset consist of spatiotemporal records.
The data collection approach in our work can be summarized as three
steps:

1. Setting parameters to generate dynamic PN images. The parame-
ters are related to the shape, size, lightness, and scale of noise.

2. We randomly select multiple regions in the PN images and grab a
fixed size of image frames at a regular time interval.

3. After getting a certain amount of data, we repeat Step1 and Step2
until we have enough data collected.

4.2 Density Generative Model
As described before, there are different ways to generate images’ inter-
polation with a deep learning model. In this paper, we follow a BiGAN
framework as the basis of our method, which contains the encoder,
generator (decoder) and discriminator. The structure can encode the
selected image into a specific distribution, which is the necessary con-
dition to interpolate two target images. The core framework of BiGAN
is shown in Figure 3(a), indicating that the encoder and generator (de-
coder) will be trained separately. The encoder transforms the real image
(real x) into the real distribution (real z), while the decoder generates
the fake image (fake x) by prior distributions (fake z). Then we concate-
nate distributions and corresponding images as pairs, the discriminator
will try to distinguish if a pair is from encoder or decoder (C1 or C2).
The above training method ensures the trained model can construct
the relationship between input images (x1,x2) and latent vector space
(z1,z2), since the network learns the image and distribution at the same
time.

DCGAN, a sound and mature model, provides convolution structure
reference for the unsupervised learning and confirms GAN can be used
to extract features [32]. However, the original model processes 32×32
images, which is too small to be used in visualization. A classic case
of results is shown in Figure 4(a), where there are shortcomings in the
details, particularly for the shape of the edge.

In our work, the PN images are large, and we hope the model can
learn a wider region of features. The improved components are shown
in Figures 3(c,d) present the structure of the encoder and decoder,
respectively, which makes the improved network applicable to the



Fig. 6. The series explains why and how we should employ Poisson
blending in parts of a large image.

large image, and we refer to other successful image networks such as
ResNet [36]. Inspired by ResNet, we design similar blocks and select
larger convolution kernels to enable the model to process a larger image
with more information. In our work, we summarize that the encoder
needs to collect information, so the encoder should contain more big
size kernels and convolution layers (Figure 3c) and decoder employs
several deconvolution layers as symmetric parts (Figure 3d).

In addition to the structure improvement, we refer to the loss func-
tion in many classical neural networks. For BiGAN training of the
encoder and generator (decoder), two loss functions are designed in the
approach. The final losses are described as Equation 2:


Dloss = max(µ(∆T − ∆T 2

2λd(x,z) ))

Gloss = min(µ[∆T +β1|z−E1(G(z))|+β2|x−G(E1(x))|])
∆T = T (E2(x),E1(x))−T (E2(G(z)),z)
d(x,z) = µ((x−G(z))+(E1(x)− z))

(2)

where Dloss and Gloss mean the loss function of the encoder and de-
coder, respectively, and µ means average operation of the loss. ∆T
means the difference between images and distributions, which is calcu-
lated by discriminator. d(x,z) is an operator measure distance between
two sets, and differences between images x and distributions z are calcu-
lated in this paper. E1, E2 and G represent the encoder for generating,
the encoder for discriminating and the generator, respectively. x, z are
symbols of real images and fake distributions, respectively, as shown
in Figure 3(a). λ , β1 and β2 are all hyperparameters to be set in our
experiment. The interpolation results are shown in Figure 4(b), the
shape of which is similar to the inputs, and the morphing result is
smoother than the result in Figure 4(a).

As the key step, we use the generator of the model to get the inter-
polation capability, and the Figure 3(b) present the detail. Users select
two density map as the real images x1 and x2. The trained encoder will
encode these images into two vector distributions z1 and z2. After z1
and z2 are interpolated, the trainable decoder can decode these inter-
polations into images set {s1,s2...sn}. According to the related deep
learning work, the set contains continuous features and the linear inter-
polation will present the smooth transition [45]. We further evaluate
the generative ability and the interpolation quality in Section 6.

After the above steps, we ultimately construct a generative model for
a 128×128 image, and most models can achieve a good performance
with this size. To distinguish it from the original BiGAN framework,
we call it Morphing GAN (Mp-GAN). Our model is designed for mor-
phing between density maps. We classify the dynamic process as three
types: connection, shift, and fusion abilities. Figure 5 shows the gener-
ated results, in which the interpolations are smooth and clear. In our
work, both a complex network model and an excessive computational
overhead are unavailable characteristics for creating an easy-to-use
method. One important aspect to circumvent these issues is that users
can focus on parts of the image rather than the full information in many
scenarios; the other factor is that images may contain some valueless

Fig. 7. The experiment shows the visual effect of blue noise sampling.
(a) Colorful density map; (b) Gray density map; (c) Blue noise sampling
result; (d) Field variation representation.

information. Considering these reasons, it is not worthwhile to design
a complex special model for the large-sized image task.

Figure 6 demonstrates a typical scenario, and a large density map
illustrates a large range of the information distribution. The selected
rectangle is the ROI where information is collected, and it is obvious
that the uneven distributions in this region would change in the density
map. Initially, we try to obtain the part of an image by image segmen-
tation and then insert the generated interpolation into the source image
directly, as shown in Figure 6(a). The density change is unnatural,
particularly on the boundary.

Poisson blending is an approach to blend parts of an image into
another one and smooths the boundary of images. The challenge
has been solved by taking images as functions, and blending means
minimizing the difference between two functions. The core equation
can be described as Equation 3:



ΓNH(x,y) = φ(H)+ψ(A)+χ(B)

φ(H) = ∑
(dx,dy)+(x,y)∈Ω

H(x+dx,y+dy)

ψ(A) = ∑
(dx,dy)+(x,y)∈∂Ω

A(x+dx,y+dy)

χ(B) = ∑
(dx,dy)+(x,y)∈Ω∪∂Ω

(B(x+dx,y+dy)−B(x,y))

(3)

where ΓNH(x,y) means N points around digital (x,y) in the new merged
image H, A is the target image and B is the source image. (dx,dy) is
the probable position of the adjacent pixel, Ω represents the area of B,
while ∂Ω is the boundary of A. To summarize, we define φ(H), ψ(A),
and χ(B) to demonstrate the area in H, the boundary in A and both
elements in B, respectively.

The interpolations are shown in Figure 6(b), and the process is
smooth and continuous as in other cases. The final visual effect of
processing of the image with Poisson blending is shown in Figure 6(c),
and the result smooths the evolution of the density map and compen-
sates for the disadvantage of deep learning. We can easily find that the
density gradually increases in this region, where it is not influenced by
density in the surroundings.

4.3 Field Variation Representation
After the target images are processed by the generative model, we obtain
a series of interpolations of the selected image. However, there are two
limitations if we provide these interpolated images to users directly.
On the one hand, the model generates images based on the encoding
vectors of targets, which are asymmetrical sometimes; therefore, the
transition is unnatural. On the other hand, it is difficult to confirm the
sampling number, for the number of samples we set would influence
the continuous change. A direction visualization that helps users to
summarize the trend is an important work for the reasons above.

Initially, we calculate the change in images based on the diffusion
model and then draw arrows directly based on the gradient change
similar to most of the related work [15]. As a part of our pipeline, the
classical optical flow model can be described as Equation 4:{

min
{∫

Ω
(D0(x)−D1 ◦u)2dx+λ

∫
Ω
| ∇u |2 dx

}
| ∇u |2=| ∇u |2 + | ∇ν |2

(4)

where x means the pixels in the image, and ◦ represents a composite
function. Ω is the range of whole image, D0 and D1 indicate two



images, which often record two states in continuous time. ∇u is a
function to calculate the gradient of a pixel, which is composed of the
gradient along the u and ν directions.

As shown in Figure 7(a), this is a sample with a dynamic noise
distribution. Initially we want to use arrows to present the change trend
by the diffusion model, for arrows glyph is a common and practical
choice in a 2D visualization [30]. We design a display rule in this work;
the red arrows in the experiment mean that the region is expanded,
and the blue arrows represent the reduction in the area. However,
the presented glyphs may overlap each other or be too small, which
are the typical problems encountered using uniform sampling. Users
need to set the sampling interval and threshold to avoid these display
shortcomings.

Blue noise is widely used in texture synthesis, data sampling, and
realistic rendering, and related applications contain stippling, visualiza-
tion and reconstruction [26]. We employ the technology in this work for
overcoming aliasing and increasing the space between clusters. Users
can easily identify the shape of the density, and the sample seed distri-
bution is less dense, which makes the arrows nonoverlapping without
parameter setting. However, it is noteworthy that the brightness of gray
images represents the data density, which is not always the same in the
density map, as shown in Figure 7(b). The brightness change is impor-
tant since the density has meaning, and it is obvious that users cannot
obtain this brightness through observing the denseness of distributions.
For the original blue noise, the key is the minimum acceptable distance
between stochastic sampling points, which the main parameters control
for the sampling distribution in the whole image.

We show the uneven brightness by further enlarging the difference
of distributions, which promotes the visual effect. In the simulation
domain, LOD helps users to form large-scale visualization with fewer
data and to quantify the sampling error [19,44]. Inspired by the solution,
we classify different sample intervals as multiple levels, and the final
result is merged by overlapping multiple sample distributions. The
rule of the LBN distribution on the density map is built based on blue
noise (BN) sampling [26]; therefore, the generated points have blue
noise properties using the method. BN returns an array containing the
position of samples, and the complete LBN algorithm is described as
Algorithm 1. We improve the visual effect by employing a level-blue-
noise (LBN) method, which combines the advantages of LOD and blue
noise sampling. Figure 7(c) illustrates the sampling result using LBN,
and the point indicate the sampling position. Figure 7(d) shows a case
of change trend representation. Arrow size indicates the change value.
Arrow direction indicates the change trend, and the arrow glyphs are
distributed in the major regions.

5 EXPERIMENTS

We show the GenerativeMap visualization cases and the effect of the
trend presentation in this section. GenerativeMap extracts the continu-
ous interpolation of the density map and presents the morphing trends
in a natural visual style. We use various common datasets and show
different change trend maps. The first datasets are artificial datasets,
whereas the other two are real-world datasets. All datasets are pre-
rendered by Gaussian blur such that we can introduce the data into
our generative model directly. Since we are focused on the transform
dynamic of density maps rather than the event data following physical
rules, we do not emphasize the realistic characteristics of the process
details.

5.1 Artificial Data

In this work, we use PN in training data for the generative model.
The following experiment tests whether the model can learn easier
rules in addition to noise activity, which is an important potentiality
of this approach. We design hand drawing tools with a heat map and
Gaussian fuzzy sets, which can provide random density as the inputs
of GenerativeMap. The change process is computed by the diffusion
model and GenerativeMap. This experiment illustrates the ability of
extracting the change process of two unknown density maps, and we
envision it as the basis of extended applications.

Algorithm 1 LBN algorithm.
Input: P1, P2: the target density maps; K: the separate levels; M:

the maximum value of the radius; fx,y(P): the significance value
of digital locate (x,y) in the density map P; τ: the acceptable
minimum significance value;

Output: S: The array statistic of the position of samples in all the k
levels;

1: (W,H) = size(P1)
2: while k < K do
3: ck = M− fx,y(P)/k
4: for range(0,ck) and (x,y)⊆ P1 do
5: AS = [(x0,y0),(x1,y1)...(xn,yn)] = BN(x,y,ck)
6: end for
7: end while
8: while (x,y)⊆ AS do
9: xmin = min

{
x−3∗ ck,0

}
,ymin = min

{
y−3∗ ck,0

}
10: xmax = max

{
x+4∗ ck,W

}
,ymax = max

{
y−3∗ ck,H

}
11: for xmin ≤ x≤ xmax and ymin ≤ y≤ ymax do
12: BNS = BN(x,y,ck)
13: end for
14: end while
15: while k < K and (x,y)⊆ BNS do
16: if fx,y(P)> τ then
17: Sk⇐ (x,y)
18: end if
19: end while
20: return S = ∑

K
0 Sk;

(a) The morphing result with diffusion model

(b) The morphing result with GenerativeMap

Fig. 8. Morphing visualization of artificial data; the start frame and the
end frame are created by hand-drawn methods. (a) The series are
generated by the diffusion model and (b) show the smooth change by
our model.

Figure 8(b) shows the result of an artificial data case. The input
are two images, which are drawn by a volunteer. Given that they are
artificial creations, in fact, no one knows the real change process. As
discussed previously, in our model, the inputs are preprocessed by
Gaussian blur. The middle 4 frames in the Figure 8(a) are computed by
the diffusion model as a basic reference. We can find that the motion
process is a challenge for the diffusion model, for there is no overlap-
ping pixel of the input images. As a comparison, Figure 8(b) presents
the interpolation results by GenerativeMap. The middle frames change
smoothly and continuously, particularly the last half of the series. Based
on this characteristic, the tools can be extended to other applications,
such as the experiment in Section 5.2. We can also conclude Genera-
tiveMap can help users to guess the density map change, although the
learned datasets do not contain random shapes and possible change to
the process.

5.2 Dynamic Eddy Data
Based on the tools designed in Section 5.1, we can extend Genera-
tiveMap in real-world scenarios. A classical density map application
is eddy visualization, where the identification and tracking are the im-
portant tasks to illustrate ocean ensemble movement [7]. This work
collects the eddy data in a stream type, which comes from AVISO. The
site provides common flow field data combined with ocean topography

https://www.aviso.altimetry.fr/en/home.html


(a) The real data of two vortexes

(b) The morphing process of (a)

(c) The real data of vortex movement

(d) The morphing process of (c)

Fig. 9. We create density maps based on the eddy data, and our pipeline
extracts and shows the movement of the eddy. The 1st case repre-
sents two vortexes moving toward different directions, and the 2nd case
means a vortex move, where the change process shows a smooth and
continuous movement.

and the satellite information, and then, we employ the LIC method to
obtain a series of eddy images as our real data [8].

Using the density tools we designed above, the eddy map can easily
be drawn as a density map. The original eddy maps are collected from a
part of a located region in the ocean, which are shown in Figure 9(a). We
mark the target regions in red boxes, and every ensemble is composed
of two eddies. In traditional work, it is difficult to guess the probable
move trajectory without enough data because users must analyze the
movement features or summarize the basic movement rules in the ocean.
However, we can obtain a basic reference by GenerativeMap without
any prior knowledge. The processed inputs are presented in Figure 9(b),
and as in other experiments in our work, our tools employ Gaussian
fuzzy sets and gray processing in this step. A surprise to us is that
the change process is not completely linear, which does not influence
the results of GenerativeMap. We can find that the two eddies move
toward different directions, which means that the movements of eddies
are extracted independently. The pipeline still shows available results
without additional supports, although the model certainly did not learn
the rules to generate the vortex before.

In order to test the generative ability of GenerativeMap, we further
choose a different movement type. Compared with Figure 9(a), the
vortex in Figure 9(c) move from right to left. The middle three interpo-
lations in Figure 9(d) present a natural and smooth transition, and the
shadow around core can even simulate the fluid type. We also find that
the generated shape of the ensemble can match the existed real data
shape in the third and fourth frame.

We compare the generated interpolations with the real data frame-by-
frame, and the original motion process cannot be recorded continuously
because of the data property. There are only two records between the
start record and the end record as shown in Figure 9(a) and (c). To
obtain a continuous process, we need to make up the data records, and
the generated results play well for the task. The 3rd frame in Figure 9(b)
and the 2nd frame in Figure 9(d) are both conjectures, the shadow of
which is the reference for the motion process. The result indicated
that our model can be used for data interpolation in addition to image
interpolation.

Fig. 10. The density map shows the air quality in the nation, and we
focus on North China, which is influenced by haze. The 1st row is the
real data around Beijing, the 2nd row shows the interpolation change
between inputs, and the 3rd row presents change trend with arrows using
LBN.

5.3 Air Quality Data

Big data visualization is often presented on a large scale, in these
scenarios the large images are necessary. In this work, we collected the
air quality index (AQI) in China, and the data are visualized by a heat
map. Because air monitoring stations are not established everywhere,
the information distributions are also dispersed geographically. In fact,
users should only need to know the air change trend in parts of China,
and it is easy to find that the most regions have no data. For showing
information on a national scale and guaranteeing the generative quality,
it is necessary to generate large-sized images. In this test, the full
image is 1024×1024, which is commonly defined as a high-resolution
image in the image processing domain. As we introduced in Section
4.3.2, our generative model uses 128×128 data for obtaining a good
performance.

In recent years, it has been the focus of attention that haze has
appeared frequently around Beijing in China [51]. Therefore, we take
this region as the ROI, and Section 5.2 has determined the feasibility
to infer the change process by GenerativeMap. However, the national
information is too much to observe; therefore, Figure 10(a) is a typical
visualization. Another characteristic is that the data are collected every
two hours every day, which means that some regions would not change
much compared with North China. We select the data from 06:00 on
April 16, 2017, to 08:00 on April 17, 2017, and the AQI changes in the
ROI. Figure 10(b) and Figure 10(c) present the records in the same ROI,
and it is complex to perform visual analysis of the region independently
with the traditional method. The GenerativeMap greatly reduces the
difficulty of the task. As shown in Figure 10(d1-d4), the picture series
blends the result of generated interpolations and the region map. The
result is smooth and seamless, even when the data around the ROI show
a slight change. The last generated frame FN−1 is similar to the target
image as shown in Figure 10(c).

Considering that the data collected are not continuous, Genera-
tiveMap can help us infer the probable process. Furthermore, the
data change would be fuzzy with blending, which may make it difficult
for users to identify the change. We can introduce LBN to show the dif-
ferences in detail, as shown in Figure 10(e1-e4). A significant feature is
that the red arrows occupy the main area, and the blue arrows decrease
over time. The phenomena confirm the haze increases, as shown in
Figure 10(b) and Figure 10(c). Another important feature is that the
red arrows move from south to north, which presents the probable haze
movement. LBN provides a clear and nonoverlapped distribution of the
direct density change.



Table 2. Evaluation indexes

Index Symbol Task

ICS Measuring the similarity of continuous frames in a series.

T DS
Measuring the time cost of generating a specified number
of interpolations.

INT Describing how many interpolations we want to generate.

IGS
Evaluating how many features of input the interpolations
contain. This comparison is made in an interpolation.

ILS
Evaluating whether our method can direct the overall
transition trend correctly. We compare the generated frames
and the ground truth to get this index.

6 EVALUATION AND DISCUSSION

GenerativeMap is tailored to allow users to solve tasks related to the ex-
traction of density maps. As discussed in Section 1, the existing similar
work was designed by scholars for their specialized tasks. Model-driven
methods are available in these scenarios, which can be defined as prob-
lems of time segments and geometrical shape dimensions. Data-driven
methods are designed for processing the coarse data or the data that has
abnormal discretization. In contrast, our technology aims to help users
to achieve references and to empower novice users to obtain density
morphing by using existing data to train model, even when they have
no experience in the domain.

For the deep learning model that needs pretraining, the pipeline uses
the model as a generator, which generates interpolation samples accord-
ing to stored parameters. For the trained model, the quick generation
ability is the strength of deep learning. However, both quantitative and
qualitative evaluation is still necessary. Combined with the characteris-
tic of our pipeline, we design special evaluation methods, which help
users to know the generative quality and efficiency. The evaluation in-
dexes and tasks are shown in Table 2. The hash-based image similarity
algorithm [40] is the basic measurement of in our evaluations, and all
of the indexes are built on the algorithm. In our work, we use three
hashes (ahash,phash and dhash) [24, 49] because they can show good
performances in different aspects.

6.1 Time Performance
In this work, we compare the generative quality by generating a differ-
ent number of interpolation vectors, and we set an index that describes
the number of targets (INT ). The three series in Figure 11 represent
INT =4, 8, and 12. Due to space limitations, we only present 4 inter-
polations that are selected from different INT series. The actual time
cost of computing the interpolation is measured by another index, and
we call it the time cost for different samples (T DS). The T DS index
comparison is shown in Figure 12. The T DS would increase as the INT
increases, and we can find that the slope of the curve is slight. In gen-
eral, we do not need to generate too many interpolations, and the useful
INT is often less than 24. The result confirms that the computational
load does not explode when users need a more detailed process. A
common issue in traditional methods for the extraction of more details
is employing more parameters, while deep learning achieves this goal
in the pretraining.

6.2 Generative Ability
The generative ability is evaluated from continuity and validity aspects.
Figure 11(a) indicates a series of samples of INT =4, and the motion
is not smooth and as continuous in the samples, particularly in the
connection area (in the red circle). The disadvantage can also be
seen in the blue circle. Considering the principles of GenerativeMap,
the continuity of interpolations may be interrupted if the amount of
samples is few, which seriously influences the visual effect. Another
comparison is shown in Figure 11(b) and (c), where these samples are
selected from INT =8 and INT =16, respectively. The final visual effect
appears similar, and a further quantitative evaluation of interpolations
is necessary.

(a) INT = 4

(b) INT = 8

(c) INT = 12

Fig. 11. A evaluation of interpolation ability. The visual effect is different
when INT is different.

Fig. 12. The evaluation of INT-TDS. The TDS increases as the INT
increases, the slope of curve is slight, and the time cost is available for
generating the number of interpolations.

We design evaluation indexes about the similarity computation of
interpolated samples, which refer to the sample test in deep learning.
We conduct experiments and design an index to compute continuity sim-
ilarity (ICS) of one series. To measure the features our model learned,
we separate the evaluation as a global one and a local one. The index
of global similarity (IGS) describes the correlation of interpolation
and input in one series, while the index of local similarity (ILSi) is
designed to describe the similarity of the ith frame and benchmark. The
described method can be summarized as Equation 5:



Θ(P,Q) =
1
3
(ahashSim(P,Q)+ phashSim(P,Q)+dhashSim(P,Q))

ICS(Fn) =
1

INT −2

INT
∑

i=2
Θ(Fi,Fi−1)

IGS(Fn) =
1

2(INT −2)
(

INT−1
∑

i=2
Θ(Fi,x1)+(

INT−2
∑
j=2

Θ(Fj,x2)))

ILSi(Fn,Gn) =
1

j2− j1

j2=min(i+1,INT )
∑

j1=max(0,i−1)
Θ(Fi,G j)

(5)
where Θ is a mean similarity of two input images (P and Q). ahashSim,
phashSim and dhashSim represent three similarity calculation methods
based on three hash algorithms. Fn, Gn, x1, and x2 are all described in
Table1.

All similarity indexes can be measured as scores, and higher scores
mean that the generative performance is better. Figure 13 and Figure 15
show the indexes we used to compare details. As we expect, there is
no linear correlation between the number and quality. The relationship
of IGS and INT is shown in Figure 13, and the scores are not always
increased as INT increases. We provide ICS in addition to IGS, and
the growth of ICS slows down within more interpolations. IGS slightly
decreases when INT is changed from 8 to 12. Hence, we conclude that
feature loss appears if unnecessary number of interpolations are applied.
Considering the performance and ability, INT =8 is an available choice
for most of the scenarios.

It is difficult to select a proper scenario to validate ground truth. In
our work, we mainly focus on the long-term discrete data and discon-



Fig. 13. The evaluation of IGS-ICS-INT. The IGS of INT=8 is the highest
in all groups, and the growth of ICS slowdown within more INT, compre-
hensive conclude that INT=8 may be the best choice for most scenarios.

(a) The ground truth of droplet

(b) The density map of ground truth

(c) The morphing process with diffusion model

(d) The morphing process with GenerateMap

Fig. 14. The evaluation of realistic generative results by our pipeline. The
highlighted area in (c) is sharp, which is obviously different from spheres.
(d) is our generative result, which is more smooth and directs the change
on the whole.

tinuous data records. An ideal ground truth should be a continuous
phenomenon that can be directly observed. We choose the droplet
movement as our experiment, which simulates the water tension. We
compare the interpolations and water movement to evaluate the genera-
tive ability. The droplet movement contains a certain natural dynamic
information. Figure 14(a) shows the dynamic process of the simu-
lation, and we grab 5 frames from the process as the benchmarks,
where the water droplet falls naturally [37]. The start-to-end frames
of Figure 14(a) are the benchmark of our experiment. To evaluate the
generative ability, we first create density maps, as shown in Figure14(b),
by the density tool according to Figure 14(a). Figure 14(c) presents the
result with the traditional diffusion model, and it is obvious that the
model cannot solve the process correctly, which is shown in the middle
3 frames. By contrast, Figure 14(d) shows the probable motion of
GenerativeMap, and it appears that the model infers the correct change
gradually, particularly for the split process in F3.

ILS means the difference of the generative interpolation and the real
change process, and the index can help us to analyze the generative
ability in addition to the visual effect. As shown in Figure 15, the scores
will be higher if the generated result is more similar to the benchmark.
An interesting result is that the generated ILS scores are more obvious
than the diffusion ILS when the sample is close to the end benchmark,
which follows the visual effect that we discussed above. The results
show that the traditional diffusion model plays well at the start of
motion. However, it is influenced by the data distribution and even fails.

Fig. 15. The evaluation of the ILS-Frame. The generative ILS is higher
than the diffusion ILS when the evaluated frames are close to the end
frame.

The generated effect may be better if more information is provided or
more interpolations are generated. The final evaluation results indicate
that GenerativeMap has advantage in the integrated indicators.

6.3 Limitation

We evaluated our approach with a broad-based comparison that con-
firmed the effectiveness and necessity of our designs. We take PN to
create training datasets; therefore, the model can learn natural move-
ment features. However, the model has also learned the unnecessary
noise. To avoid the noise, we have to introduce Gaussian blur into
interpolations. Since we use many noise methods to normalize datasets;
however, this means the method is insufficient if details of images are
important.

Our system requires training the generative model, while most real
data contain special physical or mathematical rules, such as in trans-
portation and meteorology where their long-term activities follow reg-
ular patterns. These types of data need to be collected over a long
continuous time. As a result, in the approach, we can only present lim-
ited random natural variation forms. For some fields, the movements
follow some known rules, and the deep learning can be improved as
presented in the work of Byungsoo et al. [20].

Another limitation is that our pipeline is still complex. A complex
combination introduces an inconvenient implementation, which mo-
tivated us to optimize the pipeline in the future. As a well-known
problem in deep learning, GANs are not models that are stable enough.
The proposed pipeline can be further simplified and integrated to get
an end-to-end model.

7 CONCLUSION AND FUTURE WORK

We present a novel pipeline for extracting the dynamic density map that
incorporates image processing methods and an improved generative
model. The major contribution of our approach is to promote a general
approach that helps users to obtain possible dynamics between selected
density maps. In our work, we incorporate many models and design
optimization for data evolution visualization, and in particular, we
incorporate deep learning with regard to the information visualization.

An interesting avenue for future work is enhancing the visualization
approach that utilizes the training data provided by our system. The
research depends on the development of deep learning, combined with
the conditions controlled by the generative model and the smooth
generating process. The most anticipated expansion is that the approach
might be incorporated within a spatiotemporal application that is usable
by the general public.
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