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Abstract The extensive distribution of portable digital de-
vices brings demands of adapting media to restricted display
spaces or various aspect ratios. Most existing content-aware
visualization resizing approaches introduce nonlinear defor-
mation to enhance or preserve salient areas while squeezing
non-salient ones. Their deformation on image-based geo-
graphic context could cause confusion and make it harder
to interpret by the general user. In this paper, we describe
a deformation-free approach to resize the geovisualization
using density map, resulting in a collage layout of maps,
called map collage. We show our technique of constructing a
collage layout for one frame of geospatial data and a strategy
of extending it to the temporal dimension. We demonstrate
the results on two sets of geotemporal data and conducted
a survey comparing our method, the seam carving, and the
uniform scaling, which shows that ours is better than the
other two.

Keywords visualization resizing · geovisualization · spatial-
temporal data · density map · information visualization

1 Introduction

In supporting collaborative visual analysis across multiple
platforms, visualizations require suitable resizing approaches
to be adapted to various displays, mostly small-sized screens
of portable devices. Many works have been introduced to
various types of visualizations. Some resizing approaches
treat a visualization as image and perform deformation when
scaling their display size [18,33], some tweak the layout of a
visualization based on the source data. Map is a key compo-
nent in geovisualizations where geospatial data are mapped.
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However, many existing resizing approaches introduce non-
linear deformation to the map, which brings extra cognitive
loads or probable misinterpretation, especially to users who
are used to the maps based on the widely used Mercator
projection [1]. Thus, we aim to propose a geovisualization
resizing method targeting the general audience, which dose
not introduce nonlinear deformation further than the original
projection.

One simple approach to resize a map on small mobile
screens is the uniform scaling. By pinching on a touchscreen,
user could zoom in onto interesting locations. To compare
the data of multiple different locations, user could, if such
functions are provided, add them into a list and switch among
them, or zoom out to an overview degree. The former inter-
action preserves almost no mental map other than transition
animations panning the map between locations. It falls to the
users to memorize the data of the former location. As for
the second way, zooming out makes graphic type of visual
encoding, such as density map, smaller and thus harder to
recognize.

In this paper, we present a technique, called map collage,
to resize the geovisualizations to smaller display spaces or
different aspect ratios while bringing no further deforma-
tion other than original Mercator projection. Specifically, we
focus on the density maps generated by kernel density estima-
tion (KDE) [17], which represents an estimation of the spatial
distribution of data in the manner of a colorized overlay. The
important regions with their geographical contexts, i.e. un-
derlaying maps, are cropped and stitched together to form a
collage-style layout with constrained relative positions. Our
proposed technique aims to compensate the readability of the
geovisualizations on small screens as a simplification tool.
We then extend the map collage to the temporal dimension,
enabling users to switch among frames. The main challenge
arises from the difference of geospatial data between adjacent
frames. To alleviate the impact of sudden jumps of important
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regions, we first generate an initial global collage layout con-
taining all important regions of all frames and then adjusted
for each frame to fit. Simple transition animation between
two frames helps users to follow the jumps.

The contributions of our work are summarized as follows:

1. Presenting a new deformation-free resizing approach of
geovisualization that uses density map, generating a col-
lage layout of maps that shows important region in each
cell of the target display space.

2. Designing a heuristic method extending the collage lay-
out to the temporal dimension for geotemporal data brows-
ing.

3. Raising the problem of deformation-free resizing visual-
ization of geotemporal data for the first time and propos-
ing an approach for it.

2 Related Work

Image Resizing. A geovisualization with its density map
could be regarded as a static image, so that image resizing
approaches could be applied onto it. Among content-aware
image resizing methods, seam carving [3] was the first pixel-
based method. It computes monotonic seams of pixels to be
inserted or removed, achieving a variety of image manipula-
tions. Subsequently, Rubinstein et al. [26] extended this work
to video retargeting. Mesh-based resizing approaches such
as those presented by Wang et al. [31], and Wolf et al. [32]
deform images by nonlinear grid warping. These perception-
based image resizing depends on image recognition where
the result of visual saliency is conveyed via a saliency map
that identifies the importance of each pixel. Guided by the
saliency map, these image resizing methods provides contin-
uous control of the underlying image. The regions in images
with low-salient pixels are tend to be shrunk or removed, and
shapes and sizes of the regions with high-salient pixels are
tend to be preserved.

Visualization Resizing. The perception-based techniques
could be transplanted to various types of visualization with
specifically designed saliency metrics. Some types of visual-
ization may share the same traits, allowing generic resizing
solutions. ViSizer [33] combines a degree of interest (DOI)
map [10] and a clutter map for computing a significance map
of the visualization. Li et al. [18] proposed an multilayer
saliency model called visual saliency map (VSM) describ-
ing the important regions and the context of a visualization,
and then constructs an adaptive triangulation grid to deform
information visualizations, including those with geographic
context.

Cartograms. Cartograms combine geographic context
with geo-referenced statistic information by scaling geo-
graphic regions proportional to statistical values. A survey [23]
categorizes cartograms broadly into four types: contiguous,

non-contiguous, Doring and rectangular. Contiguous car-
tograms usually nonlinearly deform shapes of geographic
regions [9, 11, 15]. The Doring [6] and the rectangular [5]
ones preserve no geographic shapes at all.

Cartograms save space by integrating and summary by ad-
ministration regions, so the detailed data distribution within
regions is not preserved. Even if the distribution is preserved,
the hotspots are separated by administration borders. Our
method, on the other hand, display the original distribution
of the hotspots and separate them by density.

Similar to cartograms but different, PixelMaps [16] de-
forms map according to the distribution of spatial points but
not statistics values. However, it’s hard for the general audi-
ence to relate the dramatically deformed result to the original
map.

Focus + Context. Techniques of focus + context also
involve content enhancement and deformation, which are
related to resizing and adapting. They could retain sizes of
important regions of a downward-resized visualization. Fish-
eye [10] is a classic generic technique providing both local
foci of users’ attention and the overview of the global context.
Tu et al. [30] proposed a multi-focus technique on Treemap
nodes, which evenly enlarges selected nodes and scales down
other ones with an elastic model, while constraining the rel-
ative positions of the nodes with a directed acyclic graph
(DAG). The research by Liu et al. [21] takes texts of word
clouds as input, providing control on item-level constraints
via a force-directed model. Words granted higher importance
are enlarged while preserving former relative positions.

Photo Collage. Our approach makes a collage of maps in
analogy to a collage of photos. The aim of the photo collage
is to construct a visually pleasing combination from a group
of input images.

Rother [25] formulated the collage problem as a multi-
class labeling problem and modeled it using a Markov ran-
dom field and subsequently improved the work in AutoCol-
lage [24]. Picture collage by Liu et al. [20] imitates a real-life
collage style, stacking rectangle photographs onto the canvas.
Han et al. [13] supported a semantic correlated layout of
intact images via a property-based hierarchy of images. Im-
ageHive [28] uses a graph-layout and a constrained centroidal
Voronoi tessellation to construct the collage layout.

Yu et al. [34] built a collage layout by solving a circle
packing problem by moving each Voronoi site to the center of
the maximum inscribed circle of the Voronoi cell iteratively,
in order to preserve maximum possible circle space for each
input image.

While photos that contain circle-like salient regions ben-
efit from the circle packing, those with more irregular shapes
do not. Liu et al. [19] addressed this situation based on tri-
angulation. Restricted by chordal axis transformation (CAT)
regions, cutouts maximize their coverage rate without over-
lapping each other. The cells produced are not necessarily
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convex and are suitable for containing cutouts with arbitrary
shapes.

Existing photo collage works reflect relationship of im-
ages by adjacency, i.e, putting relevant images together. They
don’t need to constrain the relative position while making a
compact layout.

3 Map Collage

In this section, we first define and formulate the problem.
Secondly, we describe the method of high-density regions
extraction. Thirdly, the procedure of constructing the map
collage is introduced. ?? shows the pipeline of the map col-
lage approach for one frame geovisualization. In section 4,
we extend our work to the temporal dimension.

3.1 Problem Definition

The goal of our method is to resize a full-size geovisualiza-
tion from its original display space Ω to a smaller target
display space Ω ′. The high-density regions of the original
geovisualization is extracted and clustered to form a group of
non-overlapping convex polygons, called important regions,
formulated as R = {ri}n

i=1,ri ⊆Ω .
A partition of the target space consists of a set of con-

nected polygons called cells, formulated as V = {vi}n
i=1,vi ⊆

Ω ′. Each cell is associated with specifically one important
region and shows the context around that region, thus could
be regarded as a viewport on the original full-size map. The
viewport of a cell, indicated as M(v), is a mapping from Ω ′

to Ω , so that moving the focusing geographical location of a
cell can be considered as moving its viewport on the original
map.

The final map collage on the target display space is com-
posed of the partition and the focusing locations of cells.
Overall, we identify three requirements of the map collage:

Each important region should be fully visible in its
associated cell and maintain a consistent scale level. In
the following paper, the intersection of an important region
and its cell is defined as the true gain, formulated as tgi =

A(∩(vi,ri)), where A(r) denotes the size of a region.
In our work, space around important regions provides

context and visual guides and shouldn’t fully give way to
the important regions. It’s different from the works of the
photo collage aiming to maximize the coverage rate of visible
salient information [34], or in another word, cutouts [19]. So
that the true gain rate is defined as tgri = tgi/A(ri) and
tgri = 1 given fully displayed important region. The set of
true gains of all cells is indicated as T G = {tgi}n

i=1.
Each important region should avoid being visible dis-

play of unassociated important regions. One problem of
map collage, is that when putting multiple viewports (collage

cells) on a common substrate (geovisualization), a cell may
show the important regions other than the associated one,
causing the phenomenon illustrated in Figure 2. In another
word, the viewports overlap causes the visual repeating and
waste the target display space. The higher the density of the
regions or the smaller the size of the target display, the more
likely this problem appears.

To formulate this problem, we define the false gain of a
cell vi as the sum of intersected area of its viewport M(vi) and
unassociated regions, indicated as f gi =Σk 6=iA(∩(M(vi),rk)).
The set of false gains of all cells is indicated as FG =

{ f gi}n
i=1. Figure 1 illustrates how the true gain and the false

gain are defined.

rj tgj

fgj

tgi

ri

M(v )i

M(v )j

tgi

fgj

tgj

vi vj

ri

rj

(a) Original display space (b) Target display space

Fig. 1 Illustration of the true gain and the false gain. The cells and
their viewports are in blue and the important region are in red. vi and v j
are associated respectively to ri and r j . The area of false gain is marked
in orange, which is a segment of ri. vi and v j both have 100% true gain
rate for ri and r j , the two red circles, are fully contained in their cells.
vi has zero false gain, while v j intersects with ri and has false gain.

The layout should preserve relative position of neigh-
boring important regions, which could help users to realize
possible connections among geospatial data. At least, the
worst situation where relative positions of two close regions
are reversed is not allowed. In this paper, the relative posi-
tion is that, intuitively, if in Ω , an important region ra has a
neighbor region rb to its bottom right, then in Ω ′, the can-
vas position of rb is assumed to also be to the approximate
bottom right of ra.

3.2 High-Density Regions Extraction

In this paper, the important regions mainly are the regions
with high-density values on the density maps. It’s also pos-
sible that locations interesting to a user has few geospatial
data and low density. The users are allowed to manually mark
locations, which can be easily supported in the pipeline.

We extract high-density regions from the density map by
binary thresholding, the threshold for which is application-
related and indicated as threshdensity. Its effect on the final
result is displayed in Figure 10. The manually marked re-
gions are included into the binary map at this point. Then
the polygons are extracted from the binary map and clus-
tered by density (of polygon centroids). For simplification,
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we group all regions of the same cluster into one convex poly-
gon. Allocating multiple cells to each one of a group of dense
important regions causes visual repeating, which appears as
a broken mirror reflecting similar views in each shard, as
illustrated in Figure 2, where space is wasted showing the
same geographical context repeatedly.

Fig. 2 Example map collage with no clustering performed when ex-
tracting density regions. Heavy visual repeating could be observed.
Beijing appears in 3 cells.

(a) Power weighted CVT (b) Our method

Fig. 3 Comparison between the collage results using the power
weighted CVT (a) and using our method (b). Originally, location B
is northwest of A. In (a), B is shifted to the northeast of A. In (b), the
position relation is more constrained and less shifted.

Our implementation uses a contour detection algorithm [27]
to extract polygons out of thresholded density maps. Poly-
gons are clustered by DBSCAN [8] on their centroids. The
MinPts of DBSCAN is set to 1 to allow single isolated re-
gions to be distinguished. After clustering, a convex-hull-
finding algorithm [12] is applied to each cluster of polygons,
forming a new convex polygon enveloping all members of
the cluster.

3.3 Layout Construction

Given the centroids of the important regions as Voronoi sites,
the bounded rectangular display space could be partitioned
by Voronoi diagram. The partition should be aware of the

Fig. 4 The pipeline of extracting the high-density regions. (1) The
density map. (2) Thresholded binary map. (3) Contour-finding. (4) Com-
puting convex hull. (5) Size filtering (optional). (6) Density clustering.
(7) Computing convex hull again.

region sizes. The weighted centroidal Voronoi tessellation
(the weighted CVT) of Voronoi Treemap [4] could be used
to generate a partition where the cell sizes proportional to
the size of the associated important regions and the regions
are evenly distributed. However, the weight CVT does not
consider relative positions of the Voronoi sites, as showed
in Figure 3a. The result in Figure 3b is more reasonable.

The packing algorithm, such as the circle packing algo-
rithm is a feasible solution for the photo collage [34] but it
ignores relative position of items and goes only for maximum
space usage, which do not well match our requirements for
the map collage. The Voronoi sites could be moved to adjust
the cell positions. The algorithm is fast enough to support
real-time user interaction to revise the collage layout, such as
dragging to move the sub-maps closer for easier comparison.

We separate the problem into two parts, construct the
collage layout in two steps:

1. Applying a force-directed relaxation on a connected graph
of centroids of the important regions to adjust their po-
sitions properly for the next step. The relative positions
(requirement 3) are preserved in this step.

2. Partitioning the target display space using adaptive power
weighted Voronoi diagram given the centroids as Voronoi
sites while taking the requirement 1 and 2 into considera-
tion.

Before going further, the power diagram, the centroidal
Voronoi diagram (CVT) and the weighted CVT are reviewed
below. Only 2-D situation is mentioned here.

The power diagram [2] is a weighted Voronoi diagram
using the power distance as distance measure. Given a set
of points (called Voronoi sites or Voronoi generators) P =

{pi}n
i=1 in R2 and their weights W = {wi}n

i=1(wi ≤ 0) and
the power distance measure formulated as

dpw(q, pi) = ‖pi−q‖2−wi, (1)

the generated power diagram is a partition of R2, with each
cell vi defined as

vi = {q ∈ R2 | dpw(q, pi)< dpw(q, p j),∀p j 6=i ∈ P}. (2)
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The centroidal Voronoi tessellation [7] (CVT) is a kind
of Voronoi diagram with evenly distributed cells with aspect
ratio close to one. Lloyd’s method [22] iteratively moves
each site to the centroid of its cell and then recomputes the
Voronoi diagram until the distance error between sites and
cell centroids reaches a threshold.

The weighted version of CVT was first presented by
Balzer et al. for computing Voronoi Treemaps [4], designed
in analogy to Lloyd’s method. Other than centering sites, the
algorithm adaptively alters site weights so that the principle
structure of Treemaps [14], the size of each cell being pro-
portional to the value of the corresponding node, is satisfied.

3.3.1 Centroids Scaling

Centroids of the important regions are used as Voronoi sites to
partition Ω ′ after that they are mapped from Ω to Ω ′. There
could be paddings between the bounding box containing
all important regions and the boundary of Ω , So that the
uniform scaling down keeps the paddings which we would
like to eliminate for utilizing the space of Ω ′.

Let B(R) denote the bounding box of R, C = {ci}n
i=1 ⊂Ω

the centroids of R, P = {pi}n
i=1 the resulting Voronoi sites in

Ω ′. We eliminate the paddings by scaling the centroids from
B(R) to Ω ′, formulated as

x(pi) = (x(ci)− x(B(R)tl))
W (B(R))

W (Ω)
,∀i ∈ [1,n] (3)

where B(R)tl is the top left point of B(R), W (B(R)) is the
width of B(R), W (Ω) is the width of Ω and x(pi) is the x-
coordinate of pi. The formulation computing the y-coordinates
is similar. Intuitively, the scale first aligns B(R) with Ω ′ on
the top left corner and then scales down B(R) to its size.

3.3.2 Force-directed Position Adjustment

Performing size adaption with fixed-position sites could prob-
ably generate poor results depending on the distribution and
weights. As illustrated in Figure 5a, sparse low-weighted
sites are assigned more space than needed and cell size of the
highest-weighted site is limited. We adjusts the site positions
to a properer state while preserving the position relationship,
achieving the result in Figure 5b.

A set of properly positioned sites should (1) keep all
important regions within Ω ′, (2) have large interval around
high-weighted sites and small interval around low-weighted
ones, and (3) constrain relative positions. Three forces are
designed for the three requirements: (1) the boundary force,
(2) the collision force and (3) the link-direction force.

The collision force pushes sites away from each other,
leaving sufficient space for cell size adaption. The shapes of
important regions are taken into consideration by performing
polygon collision. The polygons for collision is generated by

(a) (b)

Fig. 5 Results of size adaption with different site positions (in red).
The black polygons represent the desired display spaces of the cell.
(a) With no position adjustment, the cell on the right with the largest
desired size is limited by its neighbors, while others take more space
than need. (b) After position adjustment, the cell sizes are properer.

outwardly expanding edges of the important regions until the
sizes increase to xi,∀i ∈ [1,n].

The boundary force is used to keep the important regions
inside the boundary of Ω ′. For any pi, the specific boundary
is the boundary of Ω ′ shrunk by half the width and height
of the bounding boxes of ri. Let Γi denote the boundary for
pi and Γi(pi) the projection of pi onto Γi. If pi is outside of
Γi, Γi(pi) is the closest position on Γi from pi. Otherwise,
Γi(pi) = pi. The boundary force is formulated as

Fb(i) =

{
kb ‖Γi(pi)− pi‖ , if pi is outside of Γi

0 , else
(4)

where kb is the weight of the boundary force.
The link-direction force is used to constrain the relative

positions of the sites by keeping the direction of links among
the sites from changing too much. The links are established
by performing Delaunay triangulation to the sites at the begin-
ning after they are scaled down, so that only links of neighbor
sites are considered. Liu et al. [21] kept the orthogonal order
of site positions by verifying their horizontal and vertical
order independently. We instead apply the constraint allow-
ing the links to shift near vertical and horizontal axes. As
illustrated in Figure 6, forces are applied to both endpoints of
a link to restore the original direction of it. The link-direction
force is formulated as

Fs(i) =
(i, j)∈E

∑
∥∥p′i− pi

∥∥
p′i = p j + eji

∥∥pi− p j
∥∥ (5)

where E is the set of links established by Delaunay triangula-
tion, eji is a unit vector denotes the original direction from j
to i, and p′i is the desired position of pi.

3.3.3 Size Adaption

After the site positions being adjusted by the force model,
the partition is generated based on the power weighted CVT.
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pj’
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Fig. 6 Illustration of the link-direction force: (a) Original positions of
sites (pi, p j) with link in green. (b) Positions change caused by other
forces. (c) Desired positions (p′i, p′j) are computed from the original
link-direction. The forces (Fs(i), Fs( j)) pull pi and p j , respectively, to
their desired positions.

To satisfy the desired sizes of cells, the site weights are adap-
tively altered in each step of the iteration. A power diagram
is generated at the beginning of each step, and then the actual
size of each cell is compared with its desired size. If the
actual size is smaller than the desired size, the corresponding
site weight is increased. If the cell is larger than desired, the
weight is reduced. At the end of the step, weights are limited
from being too large, otherwise nearby cells could be over-
whelmed and vanish. To increase the true gain and to reduce
the false gain of every cell, the site weights are multiplied by
two additional scale factors, other than the desired size. Our
algorithm of size adaption is outlined as subsubsection 3.3.3.

3.3.4 Map assembly and optimization

The size adaption yields the partition scheme V . Another
component of the layout is the focus regions M, defined in
the last of subsection 3.1. For now, the focus region of each
cell locates at the centroid of it.

Due to the uncertainty of cell shapes from Voronoi dia-
gram, an important region may not be fully contained by its
cell. To maximize true gains and minimize false gains, we
first optimize the layout by altering M, intuitively speaking,
by panning the important region along with the map (but
not rotating) inside each cell. We implement a heuristic opti-
mization in analogy to that of the work of photo collage [34],
which computes saliency losses in four quadrants to obtain a
moving direction for the important region of the cell. Then,
a new position of the important region is searched inside a
circle in the direction.

The false gain of a cell is reduced by moving each focus
region towards the false important region from which the
false gain is obtained so that the false gain is moved out
of the cell. A new set of focus regions M is computed. For
an optimized cell, the centroids of ri and vi are no longer
necessarily aligned. At the end of this procedure, a collage
result is constructed.

Input: target display plane Ω ′ ⊂ R2; important regions R; Voronoi
sites P; desired sizes X = {xi}n

i=1 with Σ n
i=1xi = A(Ω ′); maximum

cell size error threshold ε .
Output: partition V (P) of Ω ′ with n cells.
1: initialize weights W with wi = 1
2: repeat
3: V (P) = PowerVoronoiDiagram(Ω ′,P,W )
4: Move each important region to its assigned cell
5: Compute true gains T G and false gains FG
6: stable=true
7: for all pi ∈ P do
8: Acurrent = A(vi)
9: fdesiredSize = (xi/Acurrent)

kdesired

10: ftrueGain = (1/tgi)
ktg

11: f f alseGain = (exp(− f gi)+ k f g)/(k f g +1)
12: wi = wi ∗ fdesiredSize ∗ ftrueGain ∗ f f alseGain
13: wi = max(wi,1)
14: if |A(vi)− xi|> ε then
15: stable=false
16: end if
17: end for
18: fconstrain = ∞

19: for all {pi, p j} ⊂ P with i 6= j do
20: f = (

∥∥pi− p j
∥∥)2/(wi +w j)

21: if 0 < f < fconstrain then
22: fconstrain = f
23: end if
24: end for
25: if fconstrain < 1 then
26: for all pi ∈ P do
27: wi = wi ∗ fconstrain
28: end for
29: end if
30: until stable == true
31: return V (P)

3.3.5 Visual Encoding for Edges

Drawing edges between cells is essential, otherwise two ad-
jacent cells are hard to be visually separated. A weakness of
our approach is that when the cropped context brings origi-
nally distant regions much closer making it easier for users to
compare, it also inevitably brings bias to the relative positions
which we already tried to constrain. We try to compensate for
the loss of context by indicating how much context is cropped
by encoding the distance between two regions of two cells to
the width of their common edge as shown in Figure 7(a).

4 Temporal Map Collage

Resizing becomes challenging when the content dynamically
changes in time. Temporal-spatial density data could be re-
garded as a video on which the video resizing approaches
can be applied. However, when a user switches from frame
to frame, continual shifting of distortion also distorts users’
mental map, more importantly, the inconsistent distortion on
the same region is quite confusing.

If the temporal dimension is sampled at a large inter-
val, the generated frames tend to preserve weak temporal
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coherence. If the important regions vary substantially in their
number, position, and size, so do the resulting collage layouts.
Our strategy starts by computing a global set of important
regions, from which a global map collage is constructed. Spe-
cific adjustments are made to the global collage layout for
each frame generating a layout for each frame. All the lay-
outs have a same number of cells and similar cell positions,
contributing to keeping users’ mental map.

4.1 Global Important regions

If a geographic region presents high density in all frames, it’s
naturally a hotspot. A region presenting high density in only
a few frames, or even one single frame, could mean outliers
deserving attention. So that we take all high-density regions
of all frames into consideration. We perform an OR operation
on the thresholded density maps of all frames, resulting in a
global density map, instead of using average operations to
generate the global density map, which would dilute density
that appears in a few frames.

Extended to the temporal dimension, the set of den-
sity maps of all frames is a 3-D matrix D = {1, . . . ,T}×
{1, . . . ,W}×{1, . . . ,H}, where T is the temporal length of
the dataset. Each 2-D slice dt for all t ∈ [1,T ] is a frame of
density map, and each element D(t, i, j) is a pixel value in
the range of [0,255]. Let the global density map be indicated
as dglobal ; then, its pixel value is formulated as

dglobal(i, j) =
T⋃

t=1

{D(t, i, j)> threshdensity}. (6)

4.2 Temporal Optimization

A global collage layout is constructed from the global density
map computed by Equation 6. Applying the global collage
layout may cause unwanted effects in some cases. An impor-
tant region could be close to the edge of the cell and stray far
from the cell center. In a rare case, an important region could
show itself in more than one cells.

Our approach adapts the global collage on only the frames
where the collage performs poorly, which is identified if any
of the three metrics, namely, minimum true gain rate, max-
imum false gain rate, or maximum centroid offset exceeds
its threshold. Experimentally, the three thresholds are set as
100%, 5% and 45%. The true gain rate and the false gain
rate are defined in subsection 3.1. The centroid offset is the
distance between the cell center and its focus region.

When the global collage layout is applied to a frame with
important regions different in number, position, and size, the
correspondence between important regions and cells must be
re-established. Each important region is assigned to the cell
that displays most of it. So that a cell could be responsible

for displaying multiple regions or no region at all, while a
region should appear in at most one cell.

If the maximum centroid offset of a cell exceeds the
threshold, its site is moved towards the average centroid of
all its responsible regions. Visually, the cell moves towards
the regions, taking them into containment while pushing
other cells away. The desired size of each cell is recomputed
using the sum of size of its responsible regions. At a frame,
to keep the size of a cell that is responsible for no region from
shrinking too much, the cell holds its corresponding global
region as a placeholder. Additionally, a transition animation
of the layout is played when viewers switch among frames
transforming the partition and panning the maps. We show
the experimental results of temporal map collage in section 5.

5 Experiments

All experiments are performed on a MacBook Pro 2015 with
an Intel Core i7 CPU running at 2.2 GHz and 16 GB RAM.
We implemented the method in the form of a web application
with JavaScript and Python. OpenCV functions are called
from Python interfaces to extract polygon contours and to
calculate convex hulls.

5.1 Datasets

The first dataset includes the locations and dates of Flickr
user postings. Flickr is an online social community allow-
ing users to upload and share photos and videos. The data
came from Yahoo Flickr Creative Commons 100 Million
(YFCC100m) dataset [29]. We show only density maps ren-
dered using the posts in the mainland of the United States.
The temporal range is from January 2007 to February 2014.
Data of each month are rendered as a density map, resulting
in totally 86 frames. The resolution of each density map is
1240*620. Density values are high in major cities such as
New York, Washington D.C., San Francisco, and Chicago.
Among these large cities are intervals with large spreading
but low-density areas, which is ideal for constructing the map
collages.

The second dataset is the air quality index (AQI) cover-
ing Middle and East China, the Korean Peninsula, and Japan.
The dataset were obtained from the World Air Quality Index
project 3, a non-profit project providing unified and global
air quality information. Data of each day is rendered into a
density map, resulting into 32 frames from 12 April to 13
May in 2016. The resolution of each rendered density map
is also 1240*620. High-density areas appear at large cities
where the pollution originates. Due to the dense distribu-
tion of pollution sources, the high-density regions are much

3 http://aqicn.org
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(a) 500×500 (b) 375×667 (c) 667×375 (d) 262×467 (e) 467×262

Fig. 7 Collage results of different target display spaces. The maps of all cells keep the same zoom level so that all important regions keep the same
size.

(a) (b) (c) (d)

Fig. 8 Collage results of four sequential frames, one for each column. The results of each row use (top) independent layouts, (middle) global layout,
and (bottom) adapted layouts based on the global one.

closer to each other, resulting in large important regions after
clustering and extraction (subsection 3.2). Because of such
feature, the map collage is less suitable for working on this
dataset than the former one. However, the collage result still
benefits from skipping regions with low AQI, such as the Sea
of Japan.

5.2 Results

The results of the map collage for one frame with different
resolution and aspect ratio are displayed in Figure 7. The
zoom levels of maps in cells are as same as the original geo-
visualization and no additional zoom is performed. Overall,
our method adapts the target space well. However, when the
canvas is too small (d), the collage fails to fully contain the
region at right bottom, even though there is more empty space

around. The maps could be simply uniformly scaled down to
solve this.

The influence of threshdensity, the threshold of binary
thresholding extracting important regions (subsection 3.2), is
displayed in Figure 10. Generally, the cell number decreases
as threshdensity increases as more important regions are ex-
cluded. When threshdensity is low in Figure 10f, however,
regions are dense and clustered into large regions which
cannot be well contained. We found by experiment that
threshdensity = 150 is appropriate for the AQI dataset and
170 for the Flickr dataset.

Figure 9 shows the comparisons among four approaches:
the map collage, the power weighted CVT [4] (PWCVT
for short), the seam carving [3] and the adaptive triangula-
tion [18]. The seam carving and grid-based image resizing
approaches keep the continuity of the geographical context
at the cost of introducing nonlinear deformation. Figure 8
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(a) Original visualization (b) Ours (c) PWCVT (d) Seam carving (e) Adaptive trian-
gulation

Fig. 9 Results of different methods with smaller width.

(a) 250 (b) 200 (c) 150

(d) 125 (e) 100 (f) 50

Fig. 10 Results with different density threshold threshdensity.

displays the results of temporal collage on four frames. Each
column shows the same frame.

The results at the top row are generated independently
and each one differs from each other too much, so that users
would expend substantial effort to keep track of each region.
The four at the middle row share the same global layout,
with some issues described in subsection 4.2. The four at the
bottom row are optimized. In each layout of the first three
frames of the middle row using the global layout (Figure 8
(a, b, c)), an important region is close to the cell border and
leaves a large empty space in the middle. In the right most
frame (Figure 8d), an important region is split into two cells.

The bottom row shows optimized layouts. In Figure 8d, the
important region is contained within one cell.

6 Evaluation

We evaluated the relative-position-preserving feature by com-
paring angle changes of the links between our method and the
power weighted CVT (PWCVT). Besides, we also evaluated
the PWCVT added our size adaption (subsubsection 3.3.3)
and the optimization (subsubsection 3.3.4), called the PWCVT
optimized. Figure 11 shows the effectiveness of link direction
preservation of our force model. On the Flickr dataset, bad
situations occurred in both the PWCVT and the PWCVT op-
timized (opt), where the direction of link is severely disturbed
(larger than 90 degrees). The relative positions on the AQI
dataset generally are less disturbed than those on the Flickr
dataset because the frames of the AQI dataset contain much
fewer important regions than those of the Flickr dataset.

Fig. 11 Boxplots comparing the link-direction-preservation of the three
methods on the two datasets, Flickr (blue) and AQI (red).
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7 User Study

We conducted a user study to evaluate the ability of the
map collage in enhancing the user experience of viewing
geospatial data in the form of density maps. There were 20
participants with 16 of them familiar with the field of visual-
ization. The results of the adaptive triangulation [18] shown
in subsection 5.2 were not included in the study because of
its inadequacy. When the visualization is resized to a similar
aspect ratio, the morphing is too slight to notice, and in other
conditions, the results are not as good as those of the seam
carving, which can be observed in Figure 9(d,e).

We generated results on 5 frames using 3 methods in
the order of the seam carving [3], the map collage and the
uniform scaling, producing 15 mobile-size visualizations.
The results were grouped and displayed by methods, that
is saying, the participants are allowed to freely browse and
revise their answers in group but not among groups.

The questionnaire was carried out on participants’ private
mobile phones. The results are displayed as static images,
which means all regions in the results are high-density ones.
The participants were asked to perform no interaction (zoom-
ing and panning) to the images and keep a natural distance
from the screen. Besides, a brief introduction of the density
map and the definition of the high-density region were given
at the beginning.

The participants were asked to finish 2 tasks: (T1) com-
pare two high-density regions and determine which of them
is actually larger despite the visual deformation; (T2) iden-
tify the number of high-density regions. Our assumption is
that the nonlinear deformation of the seam carving would
bring misinterpretation in both tasks, especially T1. Using
the uniform scaling, users are expected to perform similar as
using the map collage but taking more efforts. In the end, the
participants were asked to give their preference of the three
methods. We assume that the map collage is more preferred
than the uniform scaling for the saved efforts.

The results are summarized in Figure 12. The average
spent time on the questionnaire is 6 minutes. The results
of T1 show that the participants made more mistakes us-
ing the seam carving (Figure 12a) and were more certain
of their wrong decisions than the right ones (Figure 12c),
although the participants felt approximately equally certain
of the three methods (Figure 12b). The results of the uniform
scaling, on the other hand, varies not much from ours. For T2,
the absolute errors between the real counts of high-density
regions and users’ answers show that the users are closer to
the accurate value using our map collage than the other two,
suggesting less misleading on this task. Given the 2 tasks,
most participants preferred using the map collage. Overall,
the results confirm our beforehand assumption.

Most participants appreciated that the collage layout
saves their efforts to observe and compare the high-density

regions, while some were concerned that its non-continuity
prevents users from obtaining a global understanding and
would bring misinterpretation on holistic tasks.

Fig. 12 Results of the user study. (a) T1 correct rate. (b) T1 certainty
level. (c) T1 score: correctness (1 for correctness / -1 for incorrectness)
∗ certainty level. (d) T2 absolute error. (e) Votes for the preference.

8 Limitations and Discussions

The non-continuity of the map is an inevitable shortcoming
of our approach. The loss of continuous information among
sub-maps would impair users’ performance on holistic tasks
such as (1) understanding of the global data distribution,
(2) navigating among geographical locations. So it’s better
if the map collage and the original geovisualization coex-
ists in application scenarios. In a mobile application, a map
of overview could appear as a mini-map at the corner or a
called-by-interaction layer of the application. Or the map
collage could appear as an auxiliary view for the full-size
geovisualization.

Another resizing approach could be a multi-focus defor-
mation which enlarges the important regions with a consis-
tent scale and introduces no deformation to them, which is
the point of our work. Meanwhile the other non-important
regions are deformed to give space and preserve continu-
ous information. The approach has some weaknesses. First,
it is hard to cope with vector graphics while our pipeline
considers them as same as raster images. Second, it is not
easy to be extended to the temporal dimension while han-
dling the deformation smoothly. Our method only applies
to sparsely distributed density map. Third, user may miss
some unimportant regions if our approach is applied. Fourth,
map-interaction is not abundant.

9 Conclusion

The proposed map collage crops and stitches maps to resize
the geovisualizations to smaller displays, while pulling the
important regions closer for easier comparing and preserving
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their sizes and relative positions. The map collage presents a
deformation-free way of resizing the geovisualizations, com-
pared with other resizing techniques that introduce morphing
to the image-based underlying map. A user study was con-
ducted showing that the map collage performs better than the
seam-carving and the uniform scaling for the tasks of com-
paring high-density region sizes and counting the number of
them. A simple strategy shows that the collage layout could
be extended to the temporal dimension allowing for browsing
geotemporal data.

Future works include trying other 2-D plane partition
techniques and conducting more evaluations seeking better
capacity and effectiveness of the collage layout. We would
explore more application scenarios or visualization forms,
such as scatterplots, with which our proposed method could
cope. In addition, collaging map for the streaming data is
another potential work. Without knowing the knowledge of
yet coming next frame of streaming data, the layout might be
required to change drastically in the new approach.
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