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StreamMap: Smooth Dynamic Visualization
of High-Density Streaming Points

Chenhui Li, George Baciu, Member, IEEE, and Yu Han

Abstract—Interactive visualization of streaming points for real-time scatterplots and linear blending of correlation patterns is
increasingly becoming the dominant mode of visual analytics for both big data and streaming data from active sensors and
broadcasting media. To better visualize and interact with inter-stream patterns, it is generally necessary to smooth out gaps
or distortions in the streaming data. Previous approaches either animate the points directly or present a sampled static heat-
map. We propose a new approach, called StreamMap, to smoothly blend high-density streaming points and create a visual
flow that emphasizes the density pattern distributions. In essence, we present three new contributions for the visualization
of high-density streaming points. The first contribution is a density-based method called super kernel density estimation that
aggregates streaming points using an adaptive kernel to solve the overlapping problem. The second contribution is a robust
density morphing algorithm that generates several smooth intermediate frames for a given pair of frames. The third contribution
is a trend representation design that can help convey the flow directions of the streaming points. The experimental results on
three datasets demonstrate the effectiveness of StreamMap when dynamic visualization and visual analysis of trend patterns on
streaming points are required.

Index Terms—Information visualization, trend visualization, streaming data, density map, time-varying, scatterplots
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1 INTRODUCTION

R ESEARCH on streaming data visualization is be-
coming particularly important with the increas-

ing volume of time-varying data from areas such as
social media networks, air quality monitoring, GPS
tracking, and real-time online retailing. When visual-
izing streaming data, the two-dimensional point data
model is the most commonly used model in practice
because most of the features in the data stream can
be described as points on a two-dimensional spatial
grid, such as geographical locations, nodes in network
graphs, and atmospheric or environmental sensor
data.

Scatterplots have been used to study two-
dimensional data for many years, but they suffer
from overlapping (Fig. 1) when the data stream
contains high-density point structures. This problem
is known as overdrawing, and it has become more
significant as the size of data has exploded. In
addition, directly visualizing streaming points as
dynamic scatterplots without interpolation leads
to a significant problem of sudden sharp changes
because visual continuities are missing between two
scatterplots, as shown in Fig. 2(a). The advantages
of smooth dynamic point visualization with visual
continuity can be summarized as follows. First, the
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human visual system is well adapted to identify
changes in the shapes of dynamic regions compared
with coarse, non-smooth visualizations of dynamic
scatterplots. This advantage was reported by Tversky
et al. [1]. Second, as the size of data exponentially
increases, it becomes increasingly more difficult to
show sufficient information in a single image frame.
Although some techniques such as binning and
summarization [2] perform re-sampling and data
reduction for the target display, the number of pixels
for a static image will always remain finite, whereas
the points from data streams can easily exceed the
display capacity. Third, morphing operations, as
performed in our method, produce intermediate
patterns compared to static visualizations. Moreover,
these additional patterns can include data trends, as
presented in the work of Thirion [3].

Histogram and kernel density estimation (KDE) have
been used to overcome the overlapping problem [4].
However, the histogram has some disadvantages, as
mentioned in the works by Noriega et al. [4] and
Lampe and Hauser [5]; it is less smooth and constrains
bin selection. KDE requires manual bandwidth ad-
justment to estimate the density of streaming points.
To create visual continuity, conventional linear inter-
polation between two frames is a practical solution.
Nevertheless, when the data streams contain large
variations, this approach produces visual ghosting
patterns, as shown in Fig. 2(b). In addition, the
information generated by linear interpolation does
not always produce visually acceptable trend pat-
terns, particularly in point cloud regions. Therefore,
a smooth morphing (smooth blending) approach be-
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tween frames is necessary to produce patterns that
are easier to observe and evaluate in data streaming
visualization.

Fig. 1. High-density streaming points at different time
steps.

To address the above issues, we propose a novel
framework to represent streaming points, called
StreamMap (Fig. 3). StreamMap offers a smooth dy-
namic visualization in large regions of point clouds,
as shown in Fig. 2(c). We define the task of streaming
point visualization as both a density estimation prob-
lem and a problem in creating a smooth interpolation
between a pair of frames that contain two sets of
points during a given time interval. Our method
for visualizing the high-density point streams is to
morph the two frames smoothly, thus overcoming
overlapping and sudden changes in the dynamic
visualization. Compared with prior algorithms, our
approach not only overcomes the overdraw problem
in high-density point visualizations but also reduces
the artifacts common in dynamic visualizations. In
addition, we also dynamically show the evolution of
features in two frames.

(a) Visualizing two frames of points via scatterplots without an
interpolation.

(b) Linear blending of two density maps.

(c) Smooth morphing of two density maps using StreamMap.

Fig. 2. Smooth dynamic visualization compared with
the scatterplot and the linear blending methods. In-
between frames of two scatterplots are blank, if no
interpolation is applied. The leftmost and the rightmost
density maps are inputs of the blending.

StreamMap is more suitable for streaming data with
a ”flow” nature. For example, when the data sets are
streaming photo locations, such as from Flickr.com,
interpolated sub-frames would not reflect valid states
because the points of photo locations and the point
clouds are normally independent. Hence, we assume
that the input data set of StreamMap has a ”flow”
nature. In addition, because our work focuses on
the streaming point visualization, we assume that

points in different frames are not necessarily linked.
A trajectory is an example of a linking data set. This
assumption is different from the related works of
Willems et al. [6] and Andrienko et al. [7]. Without the
existence of point links, StreamMap conventionally
offers a smooth representation of changes.

We applied our method to three cases, all of which
include 2-dimensional points and have a ”flow” na-
ture. Nevertheless, these cases have their own char-
acteristics. Artificial data (Sec. 5.1) include explicit
continuous point distributions; therefore, we adopt
artificial data to evaluate the effectiveness of the mor-
phing method. Because a crowd of people (Sec. 5.2)
includes heterogeneous point densities, it was used
to demonstrate the density estimation method. Air
pollution (Sec. 5.3) is more unusual because the point
positions are fixed at different time steps.

Streaming Data
...

Density Map 1
(DM 1)

Density Map i
(DM i)... Density Map

n (DM n)
Density Map i
+1 (DM i+1)

...

...

StreamMap

Sub-DM 1 Sub-DM j ...Sub-DM j+1 Sub-DM m

Smooth Morphing

...

Frame 1 Frame i... Frame nFrame i+1 ...

SKDE

...... Variation Field j
(Trend Information)

...

Fig. 3. The definition of StreamMap. We assume that
points in a stream are similar to moving darts and
that the frame is the collection of darts on a projected
2D plane representation, as shown at the top of the
figure. Streaming data are organized as a density
map through data aggregation and density estimation.
StreamMap’s diffusion model supports the composition
of sub-DMs between two density maps.

Our visualization experiments on the three cases
show that StreamMap can effectively overcome the
overlapping problem, avoid abrupt changes in the
data streams, and help to reveal the key patterns
needed to comprehend the information contained in
point streams. In addition, our approach can also be
used to prioritize the trends at various resolutions in
streaming data. We summarize our major contribu-
tions as follows:
(1) We propose a new framework for visualizing and

exploring point data streams;
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(2) We present an adaptive kernel density estimation
method to aggregate high-density points in a pe-
riod as a density map with high accuracy;

(3) We propose a novel algorithm for smoothing by
morphing the estimated density maps;

(4) We provide a visualization approach to show the
variation trends in streaming data.

2 RELATED WORK
Our work is related to three types of techniques,
namely, overcoming the overdraw problem, dynamic
streaming point visualization, and feature tracking
and representation.

2.1 Overcoming the Overdraw Problem
Many methods have been proposed to overcome the
overdraw problem in high-density point visualiza-
tions. These methods can be categorized into three
main types: sampling, projection, and statistics.

The sampling methods merge points according to
their position distribution, a time step, or a feature
channel. The binning and summarization [2] method
samples data to reduce the size of the target display.
Chen et al. [8] proposed a visual abstraction and
exploration system that samples the original points
through blue noise calculation, which can represent
multi-class point distributions. Cottam et al. [9] pro-
posed a simple aggregation process that enables the
concise expression of alpha composition. When data
points are obtained from moving objects such as taxis,
flights or animals, the sampling approach presented
by Andrienko et al. [10, 11] can be used to explore the
locations of significant changes.

Compared with aggregation, the projection method
converts data from the original space into a different
space. Keim et al. [12] presented a method called Pix-
elMap that projects high-density points to surround-
ing empty regions to improve and smooth the visual
effect. Another projection method in [13] considered
readers’ impressions by adjusting the aspect ratio.
In addition, for high-dimensional data visualizations,
a projection technique proposed by Molchanov et
al. [14] represented the point data in 5D attribute
space. The projection matrix and tree methods were
proposed in the work of Yuan et al. [15] to provide
insights into high-dimensional data.

In addition to the aggregation and projection meth-
ods, statistical methods such as kernel density esti-
mation (KDE) [16] have frequently been adopted to
overcome the overlapping problem in high-density
point visualizations. Lampe and his colleagues [5]
visualized large-scale traffic data on a map using
KDE. Similarly, the KDE technique was adopted by
Willems et al. [6] to address the problems involved in
visualizing moving objects. Because point data may
belong to different groups, Mayorga and Gleicher [17]
presented a splatter plot to visualize group contours
using an extended KDE method.

2.2 Dynamic Streaming Point Visualization
A considerable amount of work has been performed
to achieve dynamic effects from streaming point data.
Krstajic and Keim [18] addressed the challenges in-
volved in measuring changes and maintaining context
in dynamic information visualization. Assuming that
each frame is a scatterplot representation and that
each point’s position in each frame is known, then
position interpolation is a suitable method to over-
come ghosting. Position interpolation, as explained in
the works of Robertson et al. [19] and Du et al. [20],
involves dynamically computing the movement tra-
jectory for each point. However, a constraint of this
method is that each point in one frame should match
a point in the next frame. In reality, not all point sets
meet this constraint. For example, when one user’s
record (represented as a point in the visualization)
appears in only one frame, it is difficult to interpolate
its position to an unknown position in the next frame.
Furthermore, point interpolation may lead to visual
confusion as the numbers of animated points increase.

Generating density maps frame by frame is a good
solution candidate to overcome visual confusion be-
cause KDE normalizes all the points in a frame into
a structured density map. However, visual ghosting
is still a problem, e.g., Fig. 2(b), if we adopt linear
interpolation between two density maps when the
frame displacements are large.

A nonlinear retargeting algorithm such as optical
flow [21] could be used to establish accurate corre-
spondences between two density maps to avoid vi-
sual ghosting. However, the time-consuming iteration
required to morph density maps and the miscon-
vergence problem make optical flow impractical for
meeting the requirements of dynamic visualizations.
Mahajan et al. [22] described a path-based moving
gradient approach that can handle complex non-rigid
morphing. Unfortunately, the moving gradient [22]
method requires further improvement when the con-
tent exhibits large-scale changes between frames.

The choice of bandwidth selection for KDE is ex-
tremely important in dynamic visualization because
it is related to the accuracy of density estimation. For
streaming data visualizations, adaptive bandwidth
estimation was adopted by Lampe et al. [5] to estimate
the density of points with respect to the level of
detail in the data. However, their method did not in-
clude adapting the bandwidth of KDE for each region
at one level, which may lead to inaccurate density
maps. Therefore, for streaming points, the existing
animation-based morphing techniques require more
improvement to achieve better dynamic effects.

2.3 Feature Tracking and Representation
Our work is also related to scientific visualization
studies, such as those in the field of feature track-
ing. Extracting features such as trend information
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from streaming data can be of great benefit to users.
Woodring et al. [23] used the wavelet transform
to change point sets into curve sets along a time
axis to track time-varying trends. Flow-based scatter-
plots [24] were presented to highlight variations in
flow data. Moreover, Samtaney et al. [25] proposed
an algorithm to extract the coherent features from
unstructured time-dependent scalar fields. They sum-
marized these interaction features as continuation,
creation, dissipation, bifurcation, and amalgamation.
Based on the work of Samtaney et al. [25], Ozer and
his colleagues [26] tracked clusters of features from
time-varying 3D flow fields to improve the perfor-
mance.

In addition, Grottel et al. [27] addressed flow groups
to study molecular dynamics by visualizing cluster
evolution over time. Moreover, cluster structural vari-
ations were visualized by Turkay et al. [28] through
an interactive cluster viewing design. However, little
work has been performed on tracking dynamic fea-
tures in streaming point data.

3 DEFINITIONS

We assume that the streaming point data used for
visualization were pre-accumulated over a set of time
intervals {t1, ..., ti}. The accumulated points within a
given consistent time interval ti can be defined as a
frame Fi. We assume that the boundary of each frame
is fixed. The super kernel density estimation (SKDE)
method is used to transform a frame Fi into a density
map Di through adaptive density estimation. Each
density map is a grayscale image with the same size.

u( )x

x x+u( )x

I T

Fig. 4. An example of the density diffusion between
two density maps. x means a pixel in a density map,
and u indicates the transformation value. I and T are
a pair of inputs in the morphing model.

In addition, we provide a robust method to
smoothly morph between each pair of density maps,
such as from Di to Di+1. To simplify the notation, we
define each pair of density maps as I and T in our
morphing model, as shown in Fig. 4. The input to our
method is a density map I , and T is the target density
map. We assume that the morphing process from I to
T can be achieved by applying a transformation to I .
We define it as Iu, which transforms the input density
map using the deformation field function u(x),

Iu(x) = I(x + u(x)),x ∈ Ω, (1)

where x denotes the position of a pixel in the density
map, u can be written as (ua, ub)

T , ua denotes the
horizontal component, and ub denotes the vertical
component. Furthermore, we define the in-between
density map (sub-DM) generated by the morphing
process between I and T as Si, where i indicates the
in-between density map index.

4 STREAMMAP

Our StreamMap model is constructed as follows:
(1) To overcome the overdraw problem, we propose a

superpoint-based estimation method called SKDE
to achieve an accurate density map from a time
period of streaming point data. SKDE achieves
an accurate density map by using adaptive kernel
selection with a fast point-clustering method.

(2) To create the visual continuity and solve the visual
ghosting problem, we use a smooth process to
dynamically visualize data streams.

(3) To identify and represent the trend in point
streams, we design a trend representation that can
help users obtain insights into the variation of
point streams.

4.1 Super Kernel Density Estimation
The super kernel density estimation (SKDE) approach
for visualizing high-density streaming point data uses
single pixels to represent multiple data points. The
basic idea behind SKDE is to achieve an adaptive
estimation of the density in a region by aggregating
the value of each influential point. For this purpose,
we generate point clusters called superpoints from the
point set and assign clusters with different estimated
kernel sizes with respect to the point number in the
cluster.

(a) Original points. (b) A density map estimated using
KDE.

Fig. 5. KDE result with fixed bandwidth. The num-
ber texts on the figure indicate three different density
points.

4.1.1 Adaptive Kernel Density Estimation
We improve the prior KDE approach [5] by mak-
ing it possible to estimate density using adaptive
bandwidth. The input of SKDE is a set of points F ,
and the output is a grayscale density map D, where



5

the size of the density map is defined as having
dwidth and dheight. In our experiments, dwidth is
1200 and dheight is 780. We formulate SKDE as K(x),
as follows:

K(x) =
1

n

n∑
j=1

1

hj
G(
|x−xj|
hj

), xj ∈ F, x ∈ F, (2)

where n is the number of points in the set F ,
G(x)= 1√

2π
e−

x2

2 is a standard Gaussian kernel, and hj
is the bandwidth of SKDE that defines the range of the
kernel function. Each point has its own bandwidth.

Traditional KDE with a fixed bandwidth suffers
from the creation of artificial blocks as shown in set-3
of Fig. 5(b) as there are some independent points in
spatial space. In addition, the KDE result in Fig. 5(b)
shows a poor visual result because medium-density
points at set-2 were estimated with high density that
is similar with high-density points at set-1. Accu-
rate manual bandwidth adjustment for each frame
may achieve a better visual estimation effectiveness.
However, it is difficult to achieve in a large-scale
stream visualization. Hence, SKDE is more suitable
for estimating the density of streaming points because
it provides automatic bandwidth assignment.

4.1.2 Superpoint Generation
The adaptive bandwidth setting is achieved through
superpoint generation (SG), which clusters the points
into nearly uniform-area superpoints. SG is inspired
from the superpixel algorithms [29] and [30] used in
the image processing field. Superpixel, which was first
presented by Ren and Malik [29], is a method that
can segment an image into nearly uniform superpix-
els (from pixel level to region level). Because each
superpixel can represent its region, the difficulty of
an image segmentation is reduced to the region level.
SLIC [30] is an improvement of the work of Ren and
Malik [29], which limits the search region to accelerate
the superpixel generation. We assign a bandwidth
to each superpoint. All points inside the superpoint
will then be estimated with the superpoint’s band-
width. Superpoints with high point densities will be
assigned larger bandwidths. Conversely, superpoints
with sparse points will be assigned smaller band-
widths.

We assume that F will be clustered into k super-
points. Initially, the points are distributed to k regular
superpoints (regular grids) of size 64, in which k
initial superpoint centers will be calculated. We can
calculate k through k =

√
dwidth·dheight

8 . The superpoint
center is equal to the mean location of points inside
the superpoint. We assume that each point is in a
2D space. Each point will be assigned to its closest
superpoint by calculating the distances between it
and its neighboring superpoint centers. We then re-
calculate the superpoint centers and repeat the point
assignment process. When no points have moved

to new superpoints with this iterative process, the
iteration stops.

We found that SG can achieve convergence for most
point sets in 8 iterations; therefore, we applied 8
iterations in our experiments. Then, we calculate the
bandwidth of superpoint shi as follows:

shi =
ni

ni∑
j=1

‖pij − ci‖
, i ∈ [1, k], (3)

where ni indicates the number of points associated
with superpoint i, pij is a point inside superpoint

i, ci is the superpoint center, and
ni∑
j=1

‖pij−ci‖ is the

variance of points from their superpoint center. Be-
cause we assume that the points belonging to the
same superpoint have a consistent bandwidth, all
point bandwidths (hj in Eq. 2) can be achieved after
calculating shi.

(a) Initial regular grids. (b) Irregular grids.

(c) K-means clustering result. (d) SG clustering result.

(e) Adaptive KDE result using k-
mean method.

(f) Adaptive KDE result using SG
method (SKDE).

Fig. 6. A comparison of the k-means and the SG
clustering methods.

Finally, a grayscale density map D for each frame
can be generated using Eq. 2. SG is an improvement
of k-means [31] that exhibits improved performance
because the required distance calculations are reduced
by limiting the search region. Figure 6(a) presents
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the initial regular grids of SG, and Fig. 6(b) shows
an example of the irregular grids in the SG process.
Figure 6(c, d) shows a comparison of the k-means
and SG clustering methods. Each circle in Fig. 6(c,
d) represents a cluster. The circle size indicates the
point number in the cluster. All cluster members are
linked with their cluster circle. As shown in Fig. 6(f),
the SG method achieves a better density map than the
k-means method. Set-2 in Fig. 6(f) are estimated with
a medium density that is more accurate than the one
in Fig. 6(e).

4.2 Smooth Morphing

We now provide the details of our smooth morphing
model. First, a basic morphing model is proposed to
solve the morphing problem. Second, we propose a
helper seed method to compensate for a weakness in
the basic morphing model. We also further improve
the effectiveness of the morphing process by overcom-
ing density nonconformity in the morphing process.

4.2.1 Diffusion Model
Inspired by the Demons diffusion model [3], we for-
mulate the morphing operation between a pair of
density maps as the following optimization problem:


δu

(n+1) = argmin
δu
{Ed(I, T, δu)︸ ︷︷ ︸

data

+ λEr(δu)︸ ︷︷ ︸
regularization

}

u(n+1) = u(n) + δu
(n+1)

,

(4)
where Ed is a data term that guarantees the accuracy
of the transformation, Er is a regularization term
that ensures the smoothness of the transformation, n
indicates the iteration step, u(n) is the transformation
of the density map, and λ is a free parameter used to
adjust the smoothness. We define the data term, Ed,
as follows:

Ed =

∫
Ω

∥∥∥Iu(n) + (∇Iu(n))
T
δu − T

∥∥∥2

dx, (5)

where T denotes the value in a target density map,
Iu(n) denotes the value in a transformed density
map after applying the transformation u(n) to I ,
and ∇ is the gradient operator. ∇Iu(n) indicates
(∂xIu(n) , ∂yIu(n))T, where ∂xIu(n) and ∂yIu(n) are two
components of ∇Iu(n) . Iu(n+1) is defined as Iu(n+1) =
Iu(n)(x+u(n+1)(x)). We then define the regularization
term, Er, as follows:

Er =

∫
Ω

‖δu‖2dx. (6)

By minimizing the functional E(δu) = Ed + λEr
with respect to the vector function δu, we can obtain
δu(n+1). We define two components of δu(n+1), which
are δuy(n+1) and δuy(n+1). According to the theory of

the calculus of variations, the Euler-Lagrange equa-
tion of δu is obtained by setting E′(δu) = 0, as shown
in Eq. 7.

E′(δu) = 0⇒
(Iu(n) − T )∇Iu(n) + (∇Iun · δu)∇Iun + λδu = 0

(7)

δux
(n+1) =

T − Iu(n)

(∂xIu(n))
2
+ λ

∂xIu(n) (8)

δuy
(n+1) =

T − Iu(n)

(∂yIu(n))
2
+ λ

∂yIu(n) (9)

From Eq. 7, we arrive at the solution as shown
in Eq. 8 and Eq. 9. We set the initial values as
δu

(0) = u(0) = 0 and Iu(0) = I . The iterative step
in Eq. 4 can be repeated until Iu(n+1) is nearly equal
to T . We observed that 16 iterations are sufficient for
most morphing cases; therefore, we apply n = 16 in
our experiments. Here, λ is set to 0.4, which is an
experiential value that can achieve a better smoothing.

In our implementation, we approximate the ∇ op-
erator using the following equations:{

gx(i, j) =
1
2 (D(i− 1, j)−D(i+ 1, j)),

gy(i, j) =
1
2 (D(i, j − 1)−D(i, j + 1)).

, (10)

where D(i, j) indicates the value at position (i, j) in
the density map.

4.2.2 Helper Seed
The diffusion model is subject to two constraints:
an accuracy constraint and a smoothness constraint.
The accuracy constraint ensures that the value of
a pixel remains constant when it is moved from
x to x + u(x), whereas the smoothness constraint
ensures that the displacement field of each pixel varies
smoothly. However, in density maps created from
streaming points, some morphing patterns may not
fulfill these constraints in a finite number of iterations.

As shown in Fig. 7, we summarize six basic mor-
phing patterns for density map morphing. The region
with the blue color (called I) is defined as the original
region, and the red region (called T ) is defined as the
target region. Although we use circles to present the
original and target regions, the contour of morphed
areas could be curves or other irregular shapes. Be-
cause a complex morphing operation can be divided
into independent basic morphing operations, we focus
only on these basic morphing patterns.

As shown in Fig. 7(a,b), growth and contraction
are the most common patterns. Here, I completely
belongs to T with respect to the growth pattern.
Conversely, T would completely belong to I in a con-
traction pattern. A cross pattern, as shown in Fig. 7(c),
means that I and T overlap. When I∩T = ∅, as shown
in Fig. 7(d-f), this diffusion model is inefficient. Fi-
nally, for the pattern in Fig. 7(d), it is difficult to ensure
that the diffusion animation fulfills the smoothness
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constraint when gaps exist between I and T . For the
examples in Fig. 7(e, f), the energy constraint is not
satisfied because the morphing is from empty to T
or from I to empty. Therefore, an optimized diffusion
model is required to achieve smooth morphing.

(a) Growth

Empty

(b) Contraction (c) Cross

(d) Moving (e) Appearing (f) Disappearing

Empty

I

T I

T TI

I T T II T

Fig. 7. Six morphing patterns. The blue region indi-
cates the area in the original density map. The red
region shows the area in the target density map. A
complete morphing procedure for two density maps
normally includes various morphing patterns.

Our approach for improving the diffusion model is
to add some suitable seeds into I and T to make sense
of the I ∩T 6= ∅ throughout the morphing process. By
adding the helper seed, each pattern in the bottom
of Fig. 7 can be divided into two patterns that match
the top patterns in Fig. 7. For example, if we add two
helper seeds called ei and et to the moving pattern
region (Fig. 8a), we obtain two sub-patterns as shown
in Fig. 8(b). Because these sub-patterns belong to
common patterns such as contraction and growth, the
morphing process will work well. The seeds required
are normally quite small; hence, their visual influence
on I and T is negligible.

I

T

e

e

t

i

Contraction GrowthMoving

I

T

s

s

(a) Original I and T .

I

T

e

e

t

i

Contraction GrowthMoving

I

T

s

s

(b) New Is and Ts with helper
seeds.

Fig. 8. After adding the seeds (ei and et), the moving
pattern has been divided into the contraction pattern
and the growth pattern. Hence, the morphing process
from Is to Ts becomes feasible.

Because the highest density area normally plays an
important role in visualization, helper seeds could be
generated in the saliency region of the density map,
particularly in the peak-value pixels. We adopt the

steepest descent (SD) method [32] (which is also known
as gradient descent) to detect the peak pixels in a
density map. We define the steepest descent method
as a function SD(X), where X is a density map and
the output is a set of detected peak pixels. E(SD)
indicates a sparse density map that only contains the
pixels in SD. In addition, we use β as a free threshold
(with an empirical value of 0.6) to control the saliency
regions. We assume that pixel values larger than β
are in a saliency region. We define Sr(X,β) as a
density map that only contains the saliency regions
of a density map X . Hence, the helper seed adding
operation on I and T can be defined as follows:{

Is = I + E(SD(Sr(T, β)))
Ts = T + E(SD(Sr(I, β)))

(11)

We define the density maps with helper seeds as Is
and Ts. Fig. 9 shows a result of peak pixel detection on
a density map using the steepest descent method [32].
Fig. 10 shows six morphing results using our seed-
based morphing model (Is and Ts are inputs).

Fig. 9. A result of peak pixel detection on a density
map using the steepest descent method [32]. e0, e1,
e2, and e3 are the detected peak pixels.

4.2.3 Overcoming Density Nonconformity

By adding the helper seeds, the diffusion model may
still suffer from the density nonconformity (DN) prob-
lem, as shown in Fig. 11(a). DN means that the final
morphing sequence will not match the target density
map (T ) using only limited calculation iterations. As
shown in Fig. 11(a), the DN problem makes it difficult
to obtain satisfactory morphing results. Figure 11(c),
left, shows a magnified result.

DN is another weakness of the diffusion model.
The reason for why DN occurs is that the accuracy
constraint (AC) is not fulfilled for some pairs of density
maps. The AC means that the variation in energy
Eve =

∑
k∈P
|ik − tk|2 should nearly equal 0, where

P is the pixel set of the density map and ik and
tk represent the density values of pixel k in I and
T , respectively. Figure 11(a) shows a pair of density
maps that will not fulfill the AC. The morphing result
generated using the diffusion model is consequently
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(a) Growth

(b) Contraction

(c) Cross

(d) Moving

(e) Appearing

(f) Disappearing

Fig. 10. Examples of six morphing patterns, each of
which includes four sub-DMs. The left column shows
the density map of Is, and the right column shows the
density map of Ts. After adding the seeds, all of the
morphing processes become feasible.

distorted, as shown in Fig. 11(a). Hence, an improved
method is required to overcome the DN problem.

In linear blending, although distortion and ghosting
appear frequently in the morphing process, the final
morphed density values are always close to the target
density map. Consequently, we present a hybrid mor-
phing model that takes advantage of linear blending
to overcome the DN problem. Combined with the
diffusion model and the helper seed method, the
improved hybrid model can be formulated as follows:

{
Si+1 = (1− ( iτ )

ψ)Siui
+ ( iτ )

ψT, S0 = Is

ui+1 = ui +
Ts−Siui

(∇Siui
)2+λ
∇Siui

,
(12)

where Si indicates the sub-DM of the morphing pro-
cess, i is the iteration index, Is is the input density
map with helper seeds, Ts is the target density map
with helper seeds, Siui

= Si(x+ui(x)), τ is the num-
ber of iterations (initiated with 16), and ψ ∈ [1,+∞] is
a free parameter that is used to adjust the convergence
speed to the target density map. The smaller ψ is,
the more artificial ghosting will appear. The larger
ψ is, the slower a target density map is achieved.
ψ = 2 achieved satisfactory results in our experiments.
By taking advantage of linear blending, the density
maps used for morphing will satisfy the AC and

(a) Morphing results using the diffusion model [3].

(b) Morphing results using our method with density nonconformity
overcoming.

(c) The one on the left is based on the diffusion model, and the one
on the right is based on our improved method. Clearly, the result on
the left includes artifacts, whereas the result on the right is smooth.

Fig. 11. Figure showing density map morphing be-
tween I and T using two methods. In the final morphing
step 6, our result is smooth and more similar to T than
using the diffusion model. Hence, our method is able
to handle density nonconformity, with minimal artifacts.

will be close to the target density map in the last
morphing step. The better results generated via this
hybrid morphing model are shown in Fig. 11(b). We
find that the sixth sequence of the morphing result,
as shown in Fig. 11(c), right, is better than using the
diffusion model without overcoming DN as shown in
Fig. 11(c), left.

The entire StreamMap algorithm is summarized
in Algorithm 1. The input of StreamMap is a pair
of point sets, such as Fj and Fj+1. The output of
StreamMap is S, which is a sequence of smooth in-
between density maps.

4.3 Trend Representation
Dynamic smooth morphing, which is similar to a
video, helps users notice the obvious trends in the
flow of information. We designed a trend representa-
tion to improve user understanding of the variations
between two density maps. The data source of trend
representation (TR) is based on a variational vector
field, which is defined as u in the smooth morphing
model, where u is a vector set that presents the in-
stantaneous velocity of each pixel on the density map.
Each iterative calculation between two density maps
in the morphing model will generate an updated u.
Based on the generated vector field data, we designed
an arrow-based representation called TR to emphasize
the trend variation. The basic TR design, as shown in
Fig. 12(a), is similar to wind and current visualization.
We define the basic visual element of TR as a trend
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Algorithm 1 StreamMap algorithm
1: procedure STREAMMAP(Fj , Fj+1)
2: Dj ← SKDE(Fj)
3: Dj+1 ← SKDE(Fj+1)
4: I ← Dj

5: T ← Dj+1

6: Is ← AddSeedI(I, T )
7: Ts ← AddSeedT (I, T )
8: u0 ← 0, S0 ← Is, i ← 0, λ ← 0.4, τ ← 16,
ψ ← 2

9: while i ≤ τ do
10: Si+1 ← (1− ( iτ )

ψ)Siui
+ ( iτ )

ψT
11: ui+1 ← ui + δ(ui, Is, Ts)
12: i← i+ 1
13: end while
14: return S = {S0, S1, ..., Sτ}
15: end procedure

representation particle (TRP). Each TRP is represented
by an arrow with a special size and direction on a den-
sity map. We define csi as a sampling interval pixel
number that defines the distance between neighboring
TRPs. Fig. 12(a) and Fig. 12(b) show two TR results
with different csi values. In addition, as shown in
Fig. 12, a red TRP means an increasing trend, whereas
a cyan TRP indicates a decreasing trend. A white circle
indicates no variation in the related region. The size
of the TPR indicates the intensity of the variation.

We further improved the TR design by presenting a
non-linear trend representation (NTR) method, which
enhances the visualization of the salient trend vari-
ation and accelerates the rendering by reducing the
number of explicit TRPs. We adopt the density map
to create a NTR distribution to enhance the trend
content. The rules of NTR distribution on the density
map are defined as follows:
(1) We define u as a variation vector field between

two density maps, I and T . Then, d = T − I is
defined as a difference density map.

(2) The sampling interval csi = (1 − davg)(µ − ν) + ν
is calculated, where davg is the average density
of I , µ indicates the upper bound of csi, and ν
defines the lower bound. In our experiment, we
set µ to 30 and ν to 10. TRPs will be assigned to a
pixel on the density map one by one according to
the sampling interval csi. Figure 12(a) shows an
example of a TRP distribution with csi = 10.

(3) We define λ(‖uid‖) to determine whether a TRP,
generated in the second step, will be shown on
the density map.

λ(‖uid‖) =
{

0, ‖uid‖ < θ
1, ‖uid‖ ≥ θ

(13)

In Eq. 13, id is the sampled pixel’s id, 0 means
hiding the TRP on the density map, and θ is a
threshold. We assign θ with 0.001 in our experi-

(a) Uniform distribution of TRP (csi = 10)

(b) Uniform distribution of TRP (csi = 20)

(c) Non-linear distribution of TRP

Fig. 12. Trend direction representation.

ments.
(4) The size of a TRP is calculated according to ‖uid‖.
(5) The color of the TRP is determined by the value

of d. When did is positive, we assign a red TRP;
otherwise, we assign a cyan TRP.

Following the rules presented above, we visualize
the NTR as shown in Fig. 12(c), which enhances the
salient region and improves the performance.

5 USE CASES

This section demonstrates usages for StreamMap. We
show how to apply our approach to three point stream
datasets. The first dataset is an artificial dataset,
whereas the other two are real-world datasets. Table 1
presents a summary of the experimental datasets. All
visualizations are implemented using JavaScript and
the D3 [33] and Leaflet [34] libraries. We improve the
speed of the SKDE calculations by rendering different
sizes of pre-rendered Gaussian kernel images. Each
Gaussian kernel image will be blended with an alpha
value (0.1 in our experiments) in the final implemen-
tation to accelerate the density estimation.

5.1 Artificial Data (AD)

We use Perlin noise (PN) [35] to artificially generate a
variety of time-varying point sets to test and evaluate
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TABLE 1
Summary of datasets used in our experiments.

Dataset Records
(Millions)

Period
(Date)

Data
Interval Elements

Artificial
Data (AD) 93.6M 07/2016-

07/2016 6 seconds Point

People
Crowd (PC) 189.3M 07/2015-

08/2015 1 minute People
Location

Air Pollution
(AP) 11.2M 03/2016-

04/2016 1 hour Location,
AQI

the StreamMap method. PN is frequently used to
create natural object surfaces in the field of computer
graphics; however, we use it here to make the two-
dimensional testing points more realistic than random
points.

Figure 13 shows an example of the morphing re-
sult (some of the morphing sequences are selected).
Figure 13(a) shows sequential point sets generated
using the Perlin noise method. We applied the SKDE
method to frame0−16 to create DM0−16, as shown in
Fig. 13(b). In this case, we apply the morphing model
to a pair of generated density maps: DM0 and DM16.
The remaining DMs (from DM1 to DM15) are used
as benchmarks to evaluate the effect of the morphing
model. Our morphing results (sub-DMs) are shown
in Fig. 13(c). The results are smooth and contain
less artificial ghosting compared with the result using
the linear blending method, as shown in Fig. 13(d).
In addition, our morphing result is similar to the
benchmarks, as shown in Fig. 13(b). We highlight a
smooth morphing density map with corresponding
frame in Fig. 13(e), which demonstrates that the mor-
phing results closely match the point sets. In Fig. 13(f),
we highlight the artifacts generated using the linear
blending method.

The similarities between benchmarks and sub-DMs
will be calculated to evaluate the morphing effective-
ness as presented in Sec. 6. When sub-DMs are similar
to benchmarks, we consider that the morphing model
has achieved a good result.

5.2 People Crowd (PC)
Our method can easily be applied to visualize the flow
of people. We collected a set of locations of people in
the center of Shanghai City from the Easygo website.
The dataset was collected per minute over ten days.
To demonstrate the performance of StreamMap, we
integrate the people locations from one hour into a
frame and then generate a total of 24 frames to create
one full day of data. Each frame will be converted
to a density map using SKDE. Figure 14(b) shows
a density map generated using the SKDE method
with adaptive kernel sizes. Figure 14(c-d) shows the
results of the KDE method with coincident kernel
sizes. Figure 14(c) (KDE with a small kernel size)
shows unclear salient regions, whereas the result will
appear over-estimated, as shown in Fig. 14(d), when

(a) Frames generated using the Perlin noise method.

(b) Density maps (DM1−15 are benchmarks).

(c) Morphing results using our method (DM0 is I , and DM16 is
T ).

(d) Results using linear blending (DM0 is I, and DM16 is T).

(e) Fifth in-between DM
merged with frame5 (our
method).

(f) Fifth in-between DM (linear
blending).

Fig. 13. Estimated density maps and the morphing
result according to the artificial data (AD).

the kernel size is large. Compared with the KDE
results, the SKDE method automatically assigns a
suitable kernel size for the detected clusters to avoid
obtaining artificial results. The SKDE method also
avoids the problem of having to manually adjust
the kernel size frequently to estimate the density
of streaming data. Consequently, the most crowded
regions at different time periods can be accurately
estimated using StreamMap. For example, we can
clearly find the most crowded regions at the center
of Shanghai in Fig. 14(b). In addition, the estimated
crowded regions are more independent than those
when using the KDE method. It is easy to enhance the
variety when two density maps used in a morphing
process involve independent regions.

In addition, StreamMap provides a smooth crowd
flow movement; thus, a user can easily detect the
trends of the people flow. Figure 15 shows smooth
morphing results on 25 July 2015 at East Nanjing
Subway Station (the left rectangle region in Fig. 14a).
In Fig. 15, we observe that people are moving toward
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(a) People locations (b) SKDE with adaptive kernel
size

(c) KDE with small kernel size (d) KDE with large kernel size

Fig. 14. Estimated density maps according to the
collected PC data between 1:00 PM and 2:00 PM on
25 July 2015.

the southwest exit from 13:00 to 14:00. Moreover, there
are two different crowds of people that appear in the
northeast and southeast. From 21:00 to 22:00, the flows
of people at East Nanjing Subway Station are stable,
whereas people at the northeast are increasing.

Figure 15 also shows the crowd variations of people
at the Bund (the right rectangle region in Fig. 14a),
which is a famous attraction in Shanghai. There are
two crowds of people at the Bund; one is stable and
the other is decreasing from 13:00 to 14:00. From
21:00 to 22:00, the upper people crowd at the Bund
is decreasing and the lower one is increasing.

Because the center of Shanghai includes many
tourist attractions, knowing the crowd situation
around the different destinations can help tourists
design their travel plans and avoid congestion at peak
hours. Similarly, knowing the directions in which
moving crowds diffuse could help urban designers
optimize routes and traffic flows.

5.3 Air Pollution (AP)
Air quality has severe adverse health effects on a large
percentage of the population as the air quality index
(AQI) increases. The AQI is used to indicate how
polluted the air is. Air pollution in one area may affect
neighboring areas. There are nearly eight thousand air
quality monitors in the world. Each record from each
monitor is visualized as a colored flag at aqicn.org.
However, the current air pollution visualization tool
at aqicn.org suffers from the overlapping problem, as
shown in Fig. 16(a). In addition, dynamic representa-
tion of AQI data is a difficult challenge.

Using the StreamMap method, we can generate
smooth air pollution diffusion animations to aid view-
ers in understanding the distribution and variation

Fig. 15. Morphing results of the people flow visualiza-
tion between two time steps. The left and right columns
are the input density maps. In-between four columns
are transition sequences selected from the iterative
morphing operation.

(a) Original AQI visualization visualized at aqicn.org.

(b) Improved AQI visualization with density map and trend
representation.

Fig. 16. Comparison of two air quality visualization
methods.

of air pollution. We collected the AQI records from
aqicn.org every hour over a forty-day period from
12 March 2016 to 26 April 2016. The basic elements
in each AQI record are the monitor location and the
AQI value. Figure 16(a) presents an example of the
distribution of air quality monitors in China. Using
the StreamMap model, we can visualize the streaming
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AQI data as continuous density maps superimposed
over a geographical map.

(a) Trend representations at East China from 19 April 2016 to 23 April
2016.

(b) Smooth morphing results at East China between 20 April 2016
and 21 April 2016.

Fig. 17. Air pollution visualization using StreamMap.

As shown in Fig. 16(a), it is difficult to obtain useful
sequential information from the static flags because
they overlap. When the display is small, the over-
lapping problem will be more serious. In addition, if
the flags are directly browsed frame by frame, then
the transformation between frames is not smooth.
Figure 16(b) shows the air pollution density map
estimated from Fig. 16(a) through SKDE. Figure 16(b)
also shows the air pollution diffusion trend. From the
blue rectangle in Fig. 16(b), users can easily observe
that the air pollution in Beijing is increasing and will
diffuse to the surrounding areas. The red rectangle
shows the increasing air pollution trend in Shang-
hai. The pollution from Shanghai may affect Anhui
Province to the west of Shanghai. Fig. 17(a) shows 5
trend representations at East China at different time
steps, which help convey the air pollution density,
the density variations and the diffusion directions.
Fig. 17(b) shows a variety of smooth air pollution
sub-DMs. Both smooth sub-DMs and trend represen-
tations can help users notice an obvious distribution
and a trend of the air pollution data.

6 EVALUATION

Fig. 18 shows the average SKDE time cost in our test.
The size of the generated density maps in the tests
was 1280×960. The inputs for SKDE are the high-
density random 2D points over the fixed area. The
generation of these random 2D points was discussed
in Section 5.1. For each point density, we generated
ten random frames for the performance tests. K is
set to 300 in the SKDE performance test. As shown
in Fig. 18, SKDE with the superpoint method can
finish on average in near real time. Moreover, we
found that as the point number increases non-linearly,
SKDE shows a nearly linear increase in computation
time. Compared with the slower k-means method, the
SKDE with the superpoint method achieves higher
performance, thus making SKDE suitable for large-
scale and high-density point visualizations.
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Fig. 18. Time cost of the SKDE method with differ-
ent data sizes (the dataset used is AD as shown in
Sec. 5.1).

We also computed the structural similarity (SSIM)
to evaluate the morphing effectiveness. SSIM was
used as a structure similarity measurement between
two images, as discussed in the work of Wang
et al. [36]. SSIM is more consistent with the vi-
sual perception of a human than peak signal-to-
noise ratio (PSNR) [37]. More similar density maps
achieve higher SSIM scores. We selected 170 contin-
uous frames from the AD dataset in Sec. 5.1 as the
testing dataset to evaluate the morphing effectiveness.
SKDE was used to generate sequences of density
maps according to the selected frames. We defined
17 density maps as a group, in which the first and
the last ones are the inputs of the smooth morphing
model (I and T ). We used the remaining ones as
benchmarks. Overall, our testing data included 10
groups. For each group, 15 sub-DMs were generated
using the morphing methods from 15 iterations. We
define two measurements to evaluate the effectiveness
of the morphing process according to the selected
testing data.

For the first measurement, we define the SSIM of
an in-between density map and a benchmark density
map as a morphing accuracy rate (MAR). MAR is
used to evaluate the morphing accuracy. Figure 19(a)
shows the MAR results obtained using three different
methods: linear blending, diffusion model [3], and our
method. As these results show, our smooth morphing
results closely match the benchmarks.

Another measurement is called morphing com-
pletion rate (MCR), which defines the SSIM of an
in-between density map and a target density map
(T ). MCR is used to evaluate whether a morphing
operation will be performed in finite iterations. If
an in-between density map is similar to a target
density map (T ), then the MCR will be close to 1.
Figure 19(b) shows the MCR results obtained using
three different methods. These results show that our
method achieves the best MCR and that the diffusion
model method requires more iterations to finish the
morphing.

Measurements of MAR and MCR show that our
method achieves a better morphing effectiveness than
the other two methods. StreamMap is also user
friendly because the smooth morphing is finished in
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16 iterations, whereas the diffusion model [3] suffers
mis-convergence in 16 iterations.
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(a) Comparison of the morphing accuracy rate: SSIM values
of a benchmark DM and an in-between DM generated
using different methods.
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(b) Comparison of the morphing completion rate: SSIM
values of a target DM (T ) and an in-between DM generated
using different methods.

Fig. 19. Comparisons of the morphing effectiveness
using two measurements.

7 CONCLUSIONS

This paper presents a new method for dynami-
cally visualizing high-density streaming points called
StreamMap. After a comprehensive overview of the
related work, such as scatterplots and linear blending,
we show how these techniques lead to the significant
problem of sudden sharp changes and ghosting occur-
ring in dynamic visualizations. Then, we present the
SKDE method to adaptively cluster the high-density
points into regular density maps. We propose a novel
diffusion-based algorithm to implement smooth mor-
phing between two estimated density maps. Finally,
we introduce a method of trend representation that
can enhance the visualization of StreamMap. The ex-
periments demonstrate the scalability of our method.
For visual analysis, changing patterns can easily be
detected through StreamMap’s visualizations.

StreamMap still has some limitations. First, al-
though we adopted an adaptive bandwidth selection
KDE method (SKDE) to estimate the density of high-
density points, the accuracies of the density contour
and peak still require improvement. Second, the ac-
curacy of the morphing operation requires further
improvement, particularly for handling the ”moving”
morphing pattern. Third, current trend representa-
tions also suffer from over-plotting, which might af-
fect the density pattern finding. Potential improve-
ments with more sophisticated representation might
be achieved through flow-visualization methods, such
as OLIC [38] and IBFV [39]. Fourth, for the data sets

without a ”flow” nature, such as the web portal logins
and the urban noise, the smooth morphing work
well; however, the trend representation will likely not
present valid states.

A future direction of exploration is to visualize the
evolution of high-density feature regions to provide
an overview of long-period streaming data. High-
density features in different frames will be generated
by StreamMap, and the visualization could be further
complemented with Sankey flow diagrams, as shown
in the works of Sebastian et al. [40] and Turkay et
al. [41]. Many other applications can easily be con-
figured to work with StreamMap, such as crowding
effects in congested public urban transportation sys-
tems. Andrienko et al. [7] presented a good method
tailored for visualizing and analyzing trajectories con-
cerning routes of people. We believe that our method
could be combined with the method of Andrienko
et al. [7] to address streaming trajectory data in the
future.
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