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Image-Driven Harmonious Color Palette
Generation for Diverse Information Visualization

Shuqi Liu, Mingtian Tao, Yifei Huang, Changbo Wang, and Chenhui Li

Abstract—Color has been widely used to encode data in all types of visualizations. Effective color palettes contain discriminable and
harmonious colors, which allow information from visualizations to be accurately and aesthetically conveyed. However, predefined
color palettes not only lack the flexibility of custom color palette generation but also ignore the context in which the visualizations
are used. Designing an effective color palette is a time-consuming and challenging process for users, even experts. In this work, we
propose the generation of an image-based visualization color palette to exploit the human perception of visually appealing images
while considering visualization cognition. By analyzing color palette constraints, including harmony, discrimination, and context,
we propose an image-driven color generation method. We design a color clustering method in the saliency-hue plane based on
visual importance detection and then select the palette based on the visualization color constraints. In addition, we design two color
optimization and assignment strategies for visualizations of different data types. Evaluations through numeric indicators and user
experiments demonstrate that the palettes predicted by our method are visually related to the original images and are aesthetically
pleasing, supporting diverse visualization contexts and data types in practical applications.

Index Terms—Visualization design, Color palette, Color assignment, Information visualization, Visual perception
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1 INTRODUCTION

HUMANS are used to acquire information by observing
the colorful world around them. Taking advantage of

observations through sight, visualizations utilize color to
convey the specific information inherited from the source
data to target audiences. The quality of color encoding
affects the effectiveness of information transmission. For
example, the inappropriate usage of color mapping may
cause problems such as confusion, obscuration, and actively
providing misleading information [1]. In this work, we provide
a preliminary hypothesis, assuming that color encoding is
conditioned on the data, the color palette, the task, and the
context. Specifically, the color palette represents many colors,
which are used to encode the data. The task indicates what
one wishes to convey, such as the trend or the pattern [2] of
the underlying data. The context is where the visualization is
used, such as a poster [3] or a projected slide.

The color palette is the basis of encoding visual expressions
with color. A great color palette helps the visualization deliver
information accurately with an aesthetically pleasing visual
effect. Color harmony has a wide range of meanings and
is described differently by different authorities [4]. There
are many qualitative rules for color harmony. Some artists
have defined forms, schemes, and relations in color space to
describe harmonic colors [5, 6]. However, color harmony is
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also widely influenced by individual preferences, and decisions
regarding aesthetic and harmonious palettes are personally
different [7, 8]. Burchett et al. [4] stated that colors viewed
together that produce a pleasing affective response are said to
be in harmony. Similarly, Cohen-Or et al. described harmonic
colors as a set of colors that are aesthetically pleasing in
terms of human visual perception [9]. While there are some
predefined color palettes available for reference, they lack the
flexibility to accommodate diverse aesthetic preferences and
visualization themes. Designing a harmonious and pleasing
color palette for visualization from scratch is quite complex
and requires professional knowledge. Some designers draw
on images to obtain color-matching inspiration and improve
efficiency. Image aesthetic value has been applied to image
retrieval, image restoration, art design, advertising, and other
fields. On the one hand, images are the most popular visual
media and are widely used in information dissemination.
Therefore, everyone can easily obtain images that meet their
aesthetic preferences from social networks or websites. On
the other hand, compared with predefined palettes, most of
images contain richer visual information and have their own
personalities, which means each of them has the potential to
inspire unique design ideas. More importantly, images may
already exist as references or constraints for the visual style
of a visualization in a certain design scene [10]. Some image-
driven color palette generation methods [11, 12, 13] have
many application prospects, and we believe that color coding
for visualization could also benefit from this design pattern.

Several studies have been performed to extract color from
images. Unsupervised methods mainly include clustering
methods [15], convex hull enclosure methods [18], and
partition statistic methods [19] that focus on the color value
at the pixel level. However, these studies merely regarded
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Fig. 1. Visualizations colored by resulting palettes extracted by our methods, Adobe [14], Chang et al. [15], Aksoy et
al. [16], and K-means [17].

the palette as a feature of an image and do not consider the
color requirements for visualization. For some state-of-the-
art automatic color palette generation algorithms, [20, 21]
measured visual discrimination metrics for palettes with
distinguishing colors; [22] analyzed and modeled designer-
crafted patterns for color ramps. These methods usually
provide various adjustable parameters for users to customize
palettes. However, it is not easy for their users to control
the overall style to adapt to diverse visualization tasks and
contexts. In addition, interaction-driven approaches [20, 21]
are not suitable for incorporating automated, large-batch
workflows.

To fill the gaps in the research described above, we propose
an image-driven visualization palette generation method. It
takes advantage of the human visual perception of images
and can help users design a cognitive color palette for their
target context. For data preprocessing, we first used a saliency
detection model to distinguish between the subject and
background in the image. We then used an FCN-based [23]
superpixel segmentation network to reduce the dimensions
while preserving the high-level features of the original image.
In our framework, we designed a clustering method based on
the visual saliency scores and hue values of colors in an image
that can group colors at different fineness levels in regions
with different visual importance. After obtaining the color
candidate set, based on the requirement of color separability
in visualizations, we modeled colors as normal distributions
in the chroma-lightness plane, evaluating the color difference
using the Bhattacharyya distance of the distribution and the
hue value distance. For discrete data, our color selection

process can produce a palette with a variable number of
colors and a background color (optional) while ensuring that
the colors are distinguishable. Then, to bring the results in
line with human aesthetic perception, we optimized the palette
based on a series of aesthetic principles. For continuous data,
we generated continuous diverging palettes with a perceptually
linear change rate. Finally, we recommended different color
combinations and assignment strategies based on the context
type of the visualization.

Our method can be applied to various practical visualization
application scenarios. Compared to other image-based color
extraction methods [14, 15, 16], our results contain distinguish-
able colors and are more similar to the original image. Some
comparison instances are shown in Figure 1. In addition,
we provide users with a new perspective on generating
visualization palettes, allowing them to select vivid natural
images instead of dull parameters to constrain the result. Our
method can also be used in an automated visualization design
workflow. We demonstrated the applicability and reliability
of our method through experiments on actual visualization
scenarios, the evaluation of quantitative indicators, and user
studies. Our contribution is mainly in the following three
aspects:

(1) We define the problem of color design for visualization
in an image-driven manner for the first time and design
a framework for solving this problem.

(2) We propose an image-driven visualization palette gen-
eration method based on human visual and aesthetic
perception.

(3) We propose a context-aware color assignment strategy
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that can automatically adapt to multitype and multistyle
charts with different contexts and apply it to several real
applications.

2 RELATED WORK

In this section, our survey of works related to color palette
extraction, design, and color encoding choices is presented.
Our discussion covers methods of extracting color palettes
from media, as well as some important factors in visualization
palette design and how different visualization tasks affect the
color encoding choice.

2.1 Palette Extraction from Media
A color palette is composed of several colors. It can be
utilized in the transmission of visual information and palette-
based human interaction. Color palettes are usually chosen by
designers or generated with the assistance of algorithms. We
will focus on the research on extracting palettes from visual
media, such as images and videos.

The aim of color palette extraction is to find several colors
that represent the source visual media. Several methods
have been proposed for different purposes. Utilizing an
unsupervised method for the color transfer of images, Chang
et al. [15] proposed computing (K + 1)-means rather than
k-means [17] to avoid choosing dark colors. However, the
generated palette tends to cause a high level of inner similarity.
Therefore, an attenuated item was introduced in [11] to reduce
this problem. To achieve color transformation in the a-b plane
of the CIELAB color space, Huang et al. [24] proposed the
H-means method to generate an appropriate color palette.
In contrast to extracting colors, [16] extracted the color
distribution represented as Gaussian kernels generated from
several seed pixels.

Overall, the recent popular color palette extraction unsu-
pervised methods can be divided into 3 categories. The first
is color clustering algorithms, including the work in [11, 25],
which groups colors into several clusters based on the task-
driven distance. The second is convex hull enclosure solutions,
such as employing convex hull geometry to represent im-
ages [18]. The last are partition statistic approaches that rely
on mask [16] and histogram thresholding [26]. The advantages
of both color clustering and convex hull enclosure were fused
in [12] to achieve color palette extraction from movies. To
capture topological changes in a video’s palette, [27] built
the RGBT skew polytope based on the RGB convex hull of
each frame. Weingerl et al. [13] built a LASSO regression
model trained on human-extracted color themes to extract
prominent colors. These methods are more in line with human
theme color extraction and can be used to observe the colors
of small but interesting parts. [28, 29] extracted a color set
from images and optimized it using the evaluation models
trained on human-made palette scoring datasets.

The color palette extraction methods mentioned above
regard the palette more as an image feature rather than a
guide for color design in visualizations. As a result, these
methods have not utilized the requirements for visualization

color and cannot achieve image-based visualization color
encoding.

2.2 Color Encoding for Visualization

The goal of color design for visualization is to provide
an appropriate color palette to ensure that visualizations
are accurately and aesthetically created. To maximize the
information transmission underlying the visualization work,
Borland et al. [30] encouraged visualization designers to
work closely with domain experts. In [31], static images
of visualization were fed into the deep learning network to
extract their color maps. Healey et al. [32] and Tufte et al. [33]
provided practical guidelines according to the constraints of
human visual perception for distinguishable colors. Maxwell et
al. [34] pointed out that the spatial distribution of colors is also
a condition for a discriminable palette. To make the calculated
maximum scaled difference more in line with the human visual
perception distance, Lu et al. [21] optimized algorithms that
maximize color distance. However, these methods only pay
attention to the distinction between colors and neglect the
aesthetic quality of visualization.

As [35] mentioned, an enjoyable visualization task benefits
from its visual aesthetics, and color design is a crucial
part of this task. They suggested taking advantage of the
aesthetic and attention-guiding cognition of professional
designers and artists to create a knowledge-based color
design system. Gramazio et al. presented Colorgorical [20]
for creating color palettes based on user-defined discrim-
inability and preferences. Using a linear regression model-
based algorithm, they calculated the aesthetic preference
score to select colors from the CIELAB space. Smart et
al. [22] fit an input color to an aesthetically pleasing color
ramp by modeling designer-crafted gradient color palettes to
obtain a mimicked result. However, these methods mostly
focused on making color palettes harmonious while rarely
considering the visualization context. Ahmad et al. [36]
mentioned that in addition to aesthetic qualities, colors in
data visualizations can impact viewers’ cognition, affect, and
behavior through semantic association. Samsel et al. [37]
extracted semantically appropriate color palettes from natural
imageries for scientific visualization and proved that they
can be used to improve analysis and communication. These
works illustrated that thematically and semantically relevant
colors can produce better expressiveness in visualizations. Our
image-based approach can automatically generate aesthetically
pleasing context-aware palettes, enabling visualization work
that reflects the theme and visual style of the corresponding
image.

In addition, the data type is also an important factor in
visualization color coding. In general, there are the following
four data types: nominal, ordinal, interval, and ratio. Nominal
data can represent categorical variables, and [32] selected
an effective color palette for nominal data by controlling the
following three metrics: color distance, linear separability,
and category. The concept of class visibility was proposed
to reduce the contrast effect for better distinguishability
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Fig. 2. The pipeline of our method. 1) Users choose an image as the input for color scheme reference. 2) The saliency
detection for the input image is performed and the visual importance levels of different regions are distinguished. 3)
We perform superpixel segmentation as the preprocess to overcome the negative influence of image quality and
facilitate subsequent calculations. 4) The average saliency score of each segmentation area is calculated and then
colors in the saliency-hue plane are grouped to obtain a candidate set. 5) The palette is selected and optimized
based on a series of color aesthetics principles. 6) The colors for visualizations are encoded according to different
data types. 7) Visualization of colored results.

performance [38]. Compared to nominal data, the orders
of ordinal data matter. Therefore, monotonic data can be
represented by the degree of lightness [1, 39]. Nominal and
ordinal data are discrete, while interval and ratio data are
continuous. One basic technique for encoding continuous
scalar data is to apply monotonic luminance profiles [40].

However, visualization color encoding still depends on
some other aspects. For example, whether one wishes to
express metric information or form information [41] should
affect color encoding. Several techniques were introduced
in [42] to compensate for target tasks, including lookup,
comparison, and relation seeking. The perceptually based hue-
chroma-luminance (HCL) color space was proposed in [43] to
encode all types of data. Later, HCL was employed in [44] to
generate tree-specific color palettes for improving node-link
diagrams and revealing tree structures. Liu et al. [45] used
colors of different chroma to represent the activation situation
of neurons in a CNN. Directly optimizing the control points of
the color palette [2] can be employed to enhance the boundary
characteristics of the data. However, these studies rarely
applied the color assignment from a predefined palette and
cannot be widely applied to visualization scenarios without
further improvements.

3 OVERVIEW

As the carrier of information, visualization provides a concise
and distinct way of displaying the features of data. Well-
designed colors are aesthetically pleasing and increase the
cognition and perception effectiveness of the visualization. A
complete color image can provide much more information and
inspiration than a palette containing limited colors. For those
with little experience in palette design, beautiful images with

harmonious tones are good references. Professional designers
tend to draw inspiration from complete images. In addition,
the tonal style of a visualization instance can match a specific
theme to deepen viewers’ impressions by extracting colors
from representative images. The tonal style is also suitable for
situations where a chart needs to be embedded in an image
or when charts and images are presented together.

To automatically generate high-quality color palettes from
images, we designed a saliency-hue-based color cluster
method to extract colors and used a palette harmony optimiza-
tion algorithm in the lightness-chroma plane to generate the
final results. The method architecture is shown in Figure 2.
Our method represents colors in CIELCh color space with
lightness (L), chroma (C), and hue (h).

First, we used a deep neural network model to detect
and simulate the important visual features of I and generate
a visual importance map Isa that contains saliency scores
for all colors. The subsequent color assignments generated
were closer to people’s perception habits. Second, we used a
superpixel segmentation network to divide pixel-level images
I into district-level results Isp for a more general image
representation. Third, we took the saliency score as the radius
and mapped the hue value of color to [0◦,360◦) as the angle to
define a circular distribution, which we called the saliency-hue
circular plane. Then, we calculated the average saliency score
of each district-level color based on Isa and Isp, distributing
them in the saliency-hue plane for clustering to obtain a
palette candidate set D. Then, for discrete data, we designed
a selection process that prioritizes colors with higher saliency
values to select the initial palette Pi for secreting data from
the candidates set D while ensuring that the colors are not
similar to one another. For ordinal data and continuous data,
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the palette should have good perceptual resolution and be
perceptually uniform throughout. We selected two colors
from the candidate set D, considering the saliency and color
distribution in image I. We followed the InterpolateColor
algorithm in [46] and obtained a continuous diverging palette
with a perceptually linear change rate.

4 METHODS

4.1 Saliency-based Multilevel Perception
When extracting the theme color palette from an image, the
overall information of the image should be considered, which
is the simplest way to pay equal attention to each part of the
image in most cases. However, it should also be realized that
people will focus on the main object of the image, which
means that the color details of partial areas with high visual
importance should receive more attention.

The choice of the most important region by the human
eye depends not only on some low-level features of the
image, such as contrast, shape, size, and color but also on
high-level semantic-related features of the image. Therefore,
we introduced a saliency detection network based on deep
learning to adapt to the human perception mechanism of the
region with high visual importance.

Traditional methods detect important objects based on
handcrafted features and calculate the predefined measure
pixel by pixel [47]. After the invention of Deep CNNs [48],
researchers started to use CNNs to extract features from
images. FCN-based methods [49] are widely used in many
tasks because they can adaptively capture high-level semantic
information. However, the lack of an upsampling process
gives rise to missing low-level features, especially the object
boundary.

We adopted the state-of-the-art salient detection network
BASNet [50] shown in 3(a) to construct the visual importance
map. This network uses an encoder-decoder network to obtain
rough results and then uses a residual refinement module to
fix the edges of the segmentation results. This architecture
ensures both the region accuracy and the boundary quality.
We simplified the original hybrid loss function, keeping only
the term corresponding to the pixel-level feature as follows:

`saliency = `bce + `sim, (1)

where `bce and `sim represent BCE loss [51] and SSIM
loss [52], respectively.

BCE loss [51] was used to measure the binary cross
entropy between the ground truth label and the predicted
visual importance map in the training process. The pixel
index of the original ground image was p = {1, ...,N}, and
the value of pixel p in the ground truth and predicted saliency
maps were denoted as Gp ∈ [0,1] and Sp ∈ [0,1], respectively.
Then, `bce was formulated as follows:

`bce(S,G) =−∑
p
(Gp · logSp +(1−Gp) · log(1−Sp)). (2)

SSIM loss [52] measures the structural similarity between
images. The visual importance map should keep the structural

B
as

ic
  r

es
b

lo
ck

 -
6

4

B
as

ic
  r

es
b

lo
ck

 -
2

5
6

-↓
2

B
as

ic
  r

es
b

lo
ck

 -
1

2
8

-↓
2

B
as

ic
  r

es
b

lo
ck

 -
5

1
2

-↓
2

B
as

ic
  r

es
b

lo
ck

-5
1

2
-↓

2

B
as

ic
  r

es
b

lo
ck

 -
5

1
2

C
o

n
v-

B
N

-R
e

LU
 -
↑

2

C
o

n
v-

B
N

-R
eL

U
 -
↑

2

C
o

n
v-

B
N

-R
eL

U
 -
↑

2

C
o

n
v-

B
N

-R
eL

U
 -
↑

2

C
o

n
v-

B
N

-R
eL

U
 -
↑

2

C
o

n
v-

B
N

-R
eL

U

B
as

ic
  r

es
b

lo
ck

 -
5

1
2

-↓
2

R
R

M

(a) BASNet

C
o

n
v-

1
6

, 3
×

3
, B

N
, L

R
eL

U

C
o

n
v-

6
4

, 3
×

3
,↓

2
, B

N
, L

R
eL

U

C
o

n
v-

3
2

, 3
×

3
,↓

2
, B

N
, L

R
eL

U

C
o

n
v-

1
2

8
, 3
×

3
,↓

2
, B

N
, L

R
eL

U

C
o

n
v-

2
5

6
, 3
×

3
,↓

2
, B

N
, L

R
eL

U

, 4
×

4
,↑

2
-B

N
-L

R
eL

U

D
ec

o
n

v-
3

2
, 4
×

4
,↑

2
-B

N
-L

R
eL

U

D
ec

o
n

v-
6

4
, 4
×

4
,↑

2
-B

N
-L

R
eL

U

D
ec

o
n

v-
1

2
8

, 4
×

4
,↑

2
-B

N
-L

R
eL

U

(b) SpixelFCN

Fig. 3. Structures of the salient detection network BAS-
Net and superpixel segmentation network SpixelFCN.

information from the ground truth, so our training integrated
SSIM loss. We cropped corresponding patches from the gray
ground truth G and predicted the visual importance map
S. The gray values for G and P were g = {g1, ...,gN} and
s = {s1, ...,sN}, respectively. The SSIM loss was defined as
follows:

`sim(S,G) = 1−
(2µgµs +C1)(2σgs +C2)

(µ2
g +µ2

s +C1)(σ2
g +σ2

s +C2)
, (3)

where µg and µs denote the mean, σg and σs denote the
standard deviation, and σgs denotes the covariance between g
and s. C1 = 0.012 and C2 = 0.032 are scalar constants.

The dataset used for training was the GDI [53], in which
the high visual importance regions are annotated and different
saliencies of designed graphics are labeled. The model trained
by GDI is able to consider all parts of the images and has a
gentle saliency gradient change, which can finely divide the
image into multiple saliency levels. We trained the network
using the Adam optimizer for 25,000 iterations with a learning
rate of 0.001 and a batch size of 8.

After obtaining the visual importance map of the input
image, we extracted the representative color of the image
background using the histogram method. Our method is based
on the following two assumptions: (1) the background part of
an image has a low-saliency score and (2) for the background
part of an image, the inside color with the most pixels can
represent the background best. We created a 16× 16× 16
histogram for the L,C,h channels of color and computed
the mean color to represent each bin. Then, pixels with
saliency values less than 0.2 were assigned to bins, and the
representative color of the bin with the most pixels was chosen
as the background color bcg. It might seem somewhat arbitrary
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to set the threshold at 0.2, but it is an empirical value and is
able to obtain good results in practice.

4.2 Superpixel Segmentation

When reducing the color space, it is more important to choose
colors that represent some structural features of the original
image than to accurately distinguish the specific value of
each pixel. Due to the possible noise or unnecessary texture,
such as jitter caused by image compression, a more sensible
approach is to generalize the color of a structural region to
resist negative influences. This process can also reduce the
complexity of the algorithm and improve the efficiency of the
framework.

Superpixel algorithms transform a pixel-level image into
a district-level image. Graph-based algorithms [54] segment
superpixels with graph-partitioning approaches. In clustering-
based algorithms [55], neighboring pixels are clustered
into unified classifications according to low-level features.
However, in deep-learning-based methods [56], the semantic
feature benefits can be perceived by the characteristic of the
deep neural network, which obtains higher efficiency and
retains more structural details.

SpixelFCN [57] uses a simple encoder-decoder structure,
such as 3(b) based on FCN. The segmentation results using
SpixelFCN achieved state-of-the-art performance on the
BSDS500 benchmark dataset [58] and attained a very fast
speed of 50 fps on the NYUv2 benchmark dataset [59]. To
reduce unnecessary calculations, SpixelFCN focuses on local
information when generating superpixels, which means that
pixels only focus on their nearby area. Finally, a soft pixel-
superpixel association map is generated, mapping every pixel
to the superpixel domain with the highest probability. For pixel
p, f (p) denotes the properties that should be preserved. Let
p′ and f (p)′ be the location and property of the reconstructed
superpixel, respectively. The loss function can be formulated
as two terms, as follows:

`spixel = ∑
p

E( f (p), f ′(p))+
w
S
‖p− p′‖2. (4)

The loss function enforces semantic property similarity in
each group and the spatial compactness between groups
individually. Here, E denotes the cross-entropy as a semantic
distance measure, S is the superpixel interval, and w represents
a weight for balance.

A representative color needs to be chosen for each region
in the superpixel segmentation result. We found that simply
calculating the average value of each pixel reduced the
global contrast, brightness, and saturation. Let Sk be the k-th
superpixel district and ck = {ck

i, j|(i, j)∈ Sk} be the color value
of each pixel in Sk. Similar to [60], we used an adaptive
coloring policy calculated by the average and median of ck:

ci, j = (α1 ∗ ck +α2 ∗ c̃k)
λ , (5)

(α1,α2) =

 (0,1) σ(ck)< γ1
(0.5,0.5) γ1 < σ(ck)< γ2
(1,0) γ2 < σ(ck),

(6)

(a) Original image (b) Average color (c) Adaptive color

Fig. 4. Comparison of average color and adaptive color
superpixel segmentation results.

where σ() refers to the variance, γ1 = 20, γ2 = 40, and λ = 1.2.
Figure 4 shows the comparison of average color and our
adaptive color results in superpixel segmentation.

4.3 Color Clustering
We designed a clustering method that gathers the colors with
similar hue and saliency scores from the district-level color
set grouped by the superpixel segmentation result to obtain
the palette candidate set.

Let RC = {rc0,rc1, . . . ,rcM} be the representative color
for each district. We calculated the average saliency score
¯sai for the i-th district based on RC and the result of the

salient detection network. Then, ¯sai and the hue value huei ∈
[0◦,360◦) of the color in CIELCh space were taken as the
radius and angle, respectively, to create a circular distribution,
which we called the saliency-hue plane. When distributing all
district-level colors of an image in the plane, the colors with
high visual importance were closer to the outer edge.

Then, we used the position of the colors in the plane to
cluster colors, generating the candidate set of the initial palette.
Assuming the final palette has n colors, we set n×5 as the
number of cluster centers. The distance between each point
and its cluster centroid was specified as the L2 distance. We
use k-means to group the colors with similar hue values and
average saliency scores and then add the color with the highest
saliency score of each cluster center to the candidate set. An
example of the color distribution and clustering results in the
saliency-hue plane is shown in Figure 5.

As it benefited from the geometric properties of the saliency-
hue plane, the division of hue in high-salience areas (i.e., near
the outer edge of the circle) was finer than that in low-salience
areas (i.e., around the circle center), such as the background.
This finding is in line with the visual perception habits of
people when observing images. As shown in Figure 6, we
extracted 30 colors from each image using our method and
k-means based on the L2 distance in the RGB color space.
It can be observed that our method obtained finer colors
from the foreground of images. In addition, compared with
the histogram statistics and distance-based color clustering
methods, our method could distinguish color blocks with
different saliency but similar hue in an image, which helps
eliminate the interference of different subjects with similar
colors on the output saliency. We further illustrated these
advantages in detail with an example in the Appendix.
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(a) Color Cluster in Lightness-Chroma Plane

(b) Palette Optimization

Fig. 5. The color clustering and optimization process. The
angle between the color point and the positive direction
of the y-axis in (a) is the hue value, and its distance from
the origin is the saliency score. The hue ring can be used
to assist in the observation.

Fig. 6. Extracting 30 colors from images using k-means
in the RGB color space (R) and saliency-hue plane (S).

4.4 Palette Selection and Optimization

In this section, we generated discrete and continuous palettes
to accommodate different data types from the color candidate
set.

4.4.1 Discrete Palette

In the process of selecting discrete palettes, we prioritized
colors with higher saliency scores and expected that they
were far away from one another. Considering a color point ψ

in CIELCh coordinates, we used L ∈ [0,100], c ∈ [0,100]
and h ∈ [0◦,360◦) to represent its lightness, chroma and
hue, respectively. The color distance we defined includes the
following two parts: one is BD, representing the difference in
chroma and lightness dimensions calculated by the method
in [61], and the other is the hue difference HD. To describe

the hue uncertainty estimation of ψ , we modeled (L,c) as a
bivariate normal distribution, as follows:

T ∼N ([c,L]T,σcL),σcL =

(
α2

c S2
c 0

0 α2
LS2

L

)
, (7)

where αc and αL are constants and

Sc = 1+0.045c, (8)

SL = 1+
0.015(L−50)2√

20+(L−50)2
. (9)

Given two colors Ci and C j and their normal distributions
Ti ∼N ([c,L]Ti ,σi) and Tj ∼N ([c,L]Tj ,σ j), respectively, we
instead used the Bhattacharyya distance BD in the color
difference formula [62] to evaluate the proximity. Here, BD
is defined as follows:

BD =
1
8
(∆[c,L]T)Tσ

−1(∆[c,L]T)+
1
2

ln(
detσ−1√

detσi detσ j
),

(10)
where ∆[c,L]T = [c,L]Ti − [c,L]Tj and σ−1 =

σi+σ j
2 . It is

considered in [61] that Ci and C j are not ambiguous if
BD(Ti,Tj)≥ 3.

Measuring the color distance with BD can help determine
whether neutral colors with small chroma are distinguishable.
We regarded BD(Ti,Tj)≥ 3 as one of the filter conditions to
avoid ambiguous colors from appearing. Algorithm 1 describes
the specific selection steps.

Algorithm 1: Selecting the palette from the candidate
set
Data: Ψ = {[(Li,ci,hi), ¯sai] | i = 0, . . . ,n×5}: a list of

n×5 colors in CIELCh coordinates with their
saliency scores ¯sai, sorted by ¯sai in descending
order.

Result: Color palette P with n colors selected from Ψ

sorted by saliency scores in descending order.
1 initialization: P = Ψ[0];
2 for i← 1 to n×5 do
3 if |hi−h j|> 5◦, BD(Ti,Tj)< 3 with

P = {[(L j,c j,h j), ¯sa j] | j = 0, . . . ,P.length} then
4 Add Ψ[i] = [(Li,ci,hi), ¯sai] to P;
5 if P.length is equal to n then
6 break;
7 end
8 end
9 end

10 if P.length < n then
11 Divide the sorted remaining candidate colors into

n−P.length groups. For each group, choose the
color that has the largest hue difference with all
elements in P.

12 end
13 Sort P by the saliency scores in descending order;
14 return P

After generating the initial palette, we aimed to optimize
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this palette to make it more harmonious while maintaining its
visual style. For palettes in the Munsell color space, Matsuda
defined several harmonic templates [5] in the value and chroma
plane. Inspired by these templates, [61] proposed that colors
in a harmonic palette must be in the vicinity of a line in
the chroma-lightness plane. In this flexible optimization and
evaluation method, there is no need to change the hue value
of the color, which is an additional advantage.

We obtained a point set Θ = {(ci,Li) | i = 0, . . . ,n} of a
palette with n colors on the lc plane and used it to fit to a
line in polar coordinates l̂ = (r̂, ϕ̂); r̂ and ϕ̂ are parameters
that need to be calculated using the following equations:

r̂ = c̄cos ϕ̂ + L̄sin ϕ̂, c̄ =
∑ωici

∑ωi
, L̄ =

∑ωiLi

∑ωi
, (11)

ϕ̂ =
1
2

arctan
−2∑i ωi(L̄−Li)(c̄− ci)

∑i ωi[(L̄−Li)2− (c̄− ci)2]
, (12)

ωi = (αcScαLSL)
−2, (13)

where c̄ and L̄ represent the mean values and ωi is the weight
of each measurement. αc, Sc, αL, and SL are the same as
defined in Equation 7. We calculated the L2 distance MD
between l and each point in Θ as follows:

MD = |ci cos ϕ̂ +Li sin ϕ̂− r̂|. (14)

If a color point is far from the line, we modified its chroma
and lightness value to bring them closer together. To strike
a balance between the harmony of the result and the degree
of color change, we heuristically set the threshold of MD to
15. An example of this optimization is shown in 5(b). It is
proven in our evaluation that the optimized color palettes are
more harmonious and still have a strong relation to the theme
of the original images.

4.4.2 Continuous Palette

Continuous visualization palettes can be divided into the
following two types: sequential and diverging [63]. Most
of the sequential types are monochromatic, showing a uni-
form gradient from a heavily saturated color to white. The
diverging types usually have two major color components,
and they transition from one color component to the other by
passing through an unsaturated color (white or yellow) [46].
Compared to sequential color maps, diverging ones are more
colorful; therefore, they can better represent the visual style
of an image and are more aesthetically pleasing. Thus, we
extracted a diverging continuous palette from the image.

Considering that diverging palette should include two major
color components with good perceptual resolution and have
a correlation with the picture, we selected two colors from
the image from the aspects of saliency and color distribution
while ensuring that the color distance is large enough. To
obtain a continuous visualization palette with a perceptually
uniform color gradient, we performed a calculation with the
two colors following the InterpolateColor algorithm [46].

4.5 Color Assignment
Finally, we assigned the colors in the palette to visualization
instances. For charts with nominal data, we used a discrete
palette and assumed that the colors with larger areas have
greater impacts on the overall color style. Thus, we assigned
colors with higher saliency scores to larger areas. Compared
to a random color assignment strategy, this strategy revealed
that the theme of the visualization instance is closer to the
original image theme. For ordinal data and continuous data, we
recommend that users linearly map the colors in the continuous
palette to the data since the palette has a perceptually linear
change rate.

In addition, it is recommended that the background color
bcg be utilized in different ways according to the specific
chart context, as follows: (1) when the chart does not require
a background, use bcg instead of the color with the lowest
saliency score in the discrete palette; (2) when the chart needs
a solid color as a background, use bcg; and (3) when the
chart has to be embedded within the original image, ignore
bcg to avoid unclear data in the image.

5 APPLICATIONS
Image-driven methods can greatly simplify workflows and
can be used in a wide range of applications. Using these
methods, particular color palettes that are adapted to different
contexts for diverse visualization tasks and design colors in
infographics are generated. A series of related experiments
were conducted with an Intel Core i7 CPU and an NVIDIA
GeForce 2080 Ti GPU.

5.1 Image-based Palette Generation
Our image-based palette generation method is user-friendly
and appropriate for new visualization designers. For novices, it
may take a long time to design a palette without any reference.
Although there are some predefined color palettes, they are
usually generic and cannot satisfy different visualization
themes or personal preferences. Most of the existing tools for
automatically generating color palettes are not designed for
visualization [14, 64], so their results cannot fit specific data
or chart types. For the tools dedicated to visualization [20, 21],
users need to set initial parameters that rely on their experience
or manually modify colors during the generation process,
which may cause them to lack inspiration when designing
multiple palettes. Our method does not require users to
have design experience; they only need to provide reference
images and choose the data type. As a result, people can
easily obtain images conforming to their aesthetic color
preferences from the internet. Therefore, our method can
alleviate problems caused by a lack of inspiration. In addition,
color schemes need to be changed frequently due to different
display scenes, contents, and even seasonal themes. It would
be time-consuming and labor intensive to manually design
colors for each scene. If the designer has ready-made product
images, advertising, and environmental images for reference,
our system can automatically generate palettes from images
and thus provide both convenience and creative inspiration.
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Fig. 7. Results of three visualization tasks using discrete
and continuous datasets.

To demonstrate that our method is effective, we selected
two types of datasets and formulated three visualization tasks.
The first dataset contains discrete data with six categories.
We used a bar chart and pie chart to show the numeric
values for each category. Another continuous dataset contains
272 coordinate points, and their density is represented by a
heatmap. Assuming that all of these visualization tasks are
in a pure context with a white background, Figure 7 shows
our results of the above tasks.

Our method works well for these tasks. The automated
generation process provides vital ease of use, and the visual
style of the palette is constrained by the original image. Ben-
efiting from our clustering and selection strategy, the colors
in the palette are not similar and satisfy a certain harmonic
template in the chroma and lightness plane, which makes
them aesthetically pleasing and harmonious. For discrete data,
we assign colors according to their saliency scores in the
original image to emphasize the visual center. For continuous
data, our interpolated palette allows the visualization result to
represent the data. Our image-driven method can be used by
novices to quickly generate personalized visualization palettes
and can also serve as a high-quality reference for experienced
designers to help them obtain inspiration from images and
improve their work efficiency.

5.2 Palette Generation for Diverse Tasks and Con-
texts
In addition to extracting palette references for visualization
from images, our method can also be used flexibly in various
situations. For example, when visualization charts are required
in a commercial advertisement or a promotional website, they
are often placed in a certain context and displayed with images.
Choosing a color palette with strong relevance to the image
for the chart helps the visualization appear more harmonious,
and the image-based palette generation method works well
for such problems. Specifically, we noticed that assigning
colors can greatly increase the visual correlation between
the charts and images if their background colors are similar,

and we have proven this in the subsequent evaluation section.
Compared with other image-based palette generation methods,
our work can be used to distinguish the background color and
calculate the saliency scores of each color in the result by
using histogram statistics and a salient detection network. As a
result, we can assign colors in a unique way that significantly
improves the result.

Sometimes graphic designers embed charts as elements into
the images on posters and in advertisements to display them as
a whole, and our system also works for these cases. To avoid
obstructing the area with high visual importance, the chart is
generally placed in the background part of the image. When
using image-based palettes for this situation, it is necessary to
remove the background color to avoid poor data representation
due to low contrast between the chart and image. Figure 8
shows the results of our system in the above cases. The results
have a harmonious visual effect when displayed together with
the original images, which provides an appropriate association
for viewers. Moreover, our system only needs an image as
input, so it can be used in some attractive applications, such
as automatically generating corresponding visualization charts
for different products on a website for promotion.

Fig. 8. Applications of charts embedded as elements into
images and displayed as a whole.

Visualization charts are also widely used in presentation
slide designs. In addition to images and charts, there are
many other colorable components in presentation slides, and
all of them will affect the final visual result. Different from
the graphic design for posters or magazines, presentation
slides, which can be produced quickly, are in high demand
and are used more frequently by nonprofessionals. There
are a large number of designed templates available on the
internet for reference, but if users modify the content or
images, they usually have to reselect the colors of other
components accordingly. Moreover, a single presentation slide
template cannot predefine visualization charts for different
requirements, so users also need to design the chart and its
palette themselves. Our system can solve the above problems.
The palette generated using the image in the presentation
slide can provide color references for both charts and other
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Fig. 9. Two generated images using our system for
presentation slides.

components. Two generated results using our system are
shown in Figure 9. In addition to directly providing palette
suggestions to users, our method can also cooperate with some
existing automatic graphic design layout algorithms [65] to
generate more personalized templates.

5.3 Color Design in Infographics

Infographics is a visualization form combining graphics and
data content. It represents information efficiently with an
artistic approach. As an essential element of infographics,
color palettes greatly influence the aesthetic appeal, which is
regarded by [46] as one of the criteria of users in selecting
visualization products. Most of the current authoring tools
used to create infographics, such as [66], only focus on
providing layout suggestions. The predefined color palettes
available within these tools limit the variety of choices and
the possibility of modifying aesthetics in infographics.

The color design of infographics has always been chal-
lenging. Yuan et al. [67] combined deep learning with an
interactive recommendation to generate color palettes for
infographics. Users must set their color preferences during
the generation process to obtain personalized results that
satisfy some specific constraints, such as the preferred tonal
style and semantic context. Cui et al. [68] proposed that
a good infographic should have harmonious colors to help
indicate latent semantics, and they proposed building a theme
library to select semantically related colors predefined by
the aesthetic experiences of users, which does not support
customizing the visual style. These approaches demonstrate
both the importance of visual aesthetic harmony and semantic
contextual relevance in the palette design for an infographic.

Our method provides a new solution to address this issue.
First, we customize palettes specifically for visualization,
and the designed color selection strategy ensures that the

results satisfy the perceptual discriminability requirements of
infographics. There is no need for manual adjustment in the
generation process. Second, as a special type of visualization,
an infographic requires a harmonious color palette to achieve
its unique artistry. The chroma and lightness of our results
are adjusted to fit a linear harmony template, which has been
proven in the art field to produce more harmonious color
collections [61]. Third, compared with the limited predefined
keywords to provide semantic information [68], massive
images can indicate more diverse and precise semantics while
carrying specific tonal styles selected by users.

Figure 10 shows several infographics produced by our
system. Suppose the first two infographics have a white
background and the last instance requires a recommended
background color. Benefiting from the visual saliency detec-
tion network used in our method, we set the center text in
(d) to be the most salient color (orange) of (a) and assigned
the colors of the main subject in (b) (flowers and branches)
to larger blocks of (e). Image (c) has cluttered subjects and
large color contrast, and the light blue background is heavily
occluded into small patches. Our method can still be used
to identify and recommend the correct background color and
extract a harmonious palette.

(a) Input (b) Input (c) Input

(d) Result (e) Result (f) Result

Fig. 10. Infographics instances. According to their original
design templates, the color transparency of the bottom
layer in (d) is 50%, and we assign the color with the
highest saliency score in the palette to the center text.
The darker colors (e) and (f) are generated by reducing
the lightness of the original colors.

6 EVALUATION

To demonstrate that our approach is suitable for visualization
and can generate acceptable results, we performed three
different evaluations, as follows: 1. two user experiments,
where one used a questionnaire to measure data cognition
accuracy for visualization, subjective preferences, and visual
similarity of visualization instances and their original images;
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the other is a user interaction experiment comparing other
visualization palette generation tools and our system; 2. a
reproducing experiment on designer-crafted palettes; and 3.
some use cases for extreme situations that take “unsightly”
images as input to show the practicality of displaying on
black-and-white media.

6.1 User Experiment

6.1.1 User Research Questionnaire
In this experiment, we perform the evaluation of palettes from
the following three aspects: similarity, where the similarity
between the original image and generated color palette are
compared; aesthetics, to determine whether the generated
palette is aesthetically pleasing; and separability, to determine
whether the palette sufficiently supports data cognition.

We designed a series of experiments with subtasks, includ-
ing one discrimination task and five preference tasks. Each
participant was asked to complete all these tasks. For the
visualization of continuous and ordinal data, we sorted the
colors of palettes generated by other methods by lightness.
Because other methods cannot detect the background colors
of images, we regarded the first color in the result as the
background color when needed. In all the experiments in this
section, “other methods” include the methods of Chang et
al. [15], Adobe [14], and K-means [17]. Due to the number
limitation of the Adobe approach, it was only used in tasks
that need 5 colors.

We recruited 54 subjects, including 6 graphic design
practitioners, 11 data visualization professionals, and 37
ordinary practitioners in other fields. The average age was
26.2, and there were two respondents with color weakness and
blue-green blindness. We collected feedback results through
questionnaires.

Similarity The predicted palette P should be similar to the
original image I. This does not mean that each color in P
should exist in I precisely, but the colors in P should provide
a similar trend to I in terms of visual perception.

To prove that the color palette generated by our method
is related to the input image, we evaluated the perceived
similarity between the generated color palette and the original
image by performing human-subject studies. In the first three
tasks, we used other methods and our methods to generate
palettes of an image and then asked subjects to choose
the visualization instance most relevant to the image. The
visualizations include a line stacking chart, pie chart, and
infographic. There are 4, 3, and 4 available options in the
three tasks, and the selection rates of our results are 48.15%,
75.93%, and 72.22%, respectively. We also selected three
images with similar tones and used our method to generate
three single-axis scatter diagrams. The participants were asked
to match them to evaluate whether our method can accurately
reflect the visual styles of different images. The rates for the
three tasks providing correct results are 62.96%, 64.81%, and
75.93%. Finally, to measure the similarity gain of setting the
correct background color and using our saliency-based color
assignment strategy, we colored a diagram with the same

palette using our method and two random methods in two
tasks. Then, participants were asked to select the diagram
most visually relevant to the original image. In both questions,
72.22% of the participants chose the diagram colored by our
method. The above results demonstrate that our image-based
color palette generation and colorization strategy can help the
visualization effectively inherit the color visual style of the
original image.

Aesthetics Aesthetics is performed as a significant global
feature of the visualization. A well-designed theme color
extraction method can inherit the aesthetics from the image.
We performed two tasks to estimate the subject’s aesthetic
perception of the results. The first one is a single-factor
experiment asking subjects to judge the pleasantness of the
visualization instance generated by our method. The second
task is a multifactor experiment to compare the pleasure felt
when viewing the visualization instances generated by other
methods and our methods.

For single-factor experiments, every visualization was
attached to a [−10,10] range slider. Participants were asked
to rate their colored visualization preference. Negative values
indicate dislike, and positive values indicate preferences.
We also provided zero as a neutral option. There are two
scoring questions, and the average scores are 3.15 and 3.93.
The multifactor experiment shows three or four visualization
instances colored with palettes generated by different methods.
Participants need to select the palette that performs best in
terms of visual effect and rate it in the same way as the single-
factor experiment. We designed three multifactor preference
scoring questions and three single-choice questions with 4,
3, and 4 options. The (selection rate, average score) of our
results in these questions are (44.44%,5.71), (48.15%,5.56),
and (46.3%,6), respectively, indicating that the acceptance
of our method was higher, and our results were considered
to have good aesthetic value. The detailed results are shown
in Figure 11.

0.2

Aesthetic Preference Scores and Selected Rates
Ours K-means Chang’s et al. Adobe

10

5

0

-5

-10
Task 1 Task 2 Task 3

Task 1

Task 2

Task 3

Fig. 11. The aesthetic preference scores and selected
rates of three multifactor tasks.

Separability After encoding P to D and obtaining the final
visualization, the colors for the categories of D need to be
distinguishable. We used scatter plots for the discrimination
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experiments. We divided four rectangular regions in a 2D
coordinate system and randomly generated 100 points in each
area. The points were clustered by their coordinates into
several groups, and we assigned colors to them. In this way,
the demarcation of each group is relatively blurred and suitable
for color-based discrimination tasks. To further increase the
difficulty of identification, we set the transparency of all points
in the scatter plots to 80%. The participants needed to identify
the number of categories, which was used to calculate the
absolute difference with the actual value to represent the
error. We created two scatter plots with 5 categories. The
identification accuracy of the participants was 94.44%, and
the average error was 0.06. Both participants with color vision
deficiencies answered correctly. The experiment shows that our
method can generate distinguishable colors for visualizations.

6.1.2 User Interaction Experiment
Some existing tools support the generation of unique visualiza-
tion palettes through user interaction, such as Colorgorical [20]
and Palettailor [21]. Inspired by these systems, we developed
a customized interface based on our method, which allows
users to input an image and generate a palette. It supports
the number of colors from 4 to 7 and provides several
chart instances for users to preview the coloring effect.
This system contains the core functionality of our method,
and we compared it with Colorgorial and Palettailor in this
experiment.

We recruited five participants with little experience in
visualization design, including 3 males and 2 females. They
were asked to complete the following two tasks in order
using Adobe Photoshop Color Picker (designing palette by
themselves), Colorgorical, Palettailor, and our system.
(1) Generate a personally satisfying 6-color visualization

palette with a white background.
(2) Generate a personally satisfying 6-color visualization

palette with one additional background color. Moreover,
its color style should differ from the first generated
palette.

Before the experiment, for each tool, we spent approxi-
mately five minutes explaining to the participants how to use
it. When using our system, the participants can freely select
input images from the internet or the provided folder with 100
natural images. When the participants performed task 2 using
Colorgorical and Palettailor, they had to generate a 7-color
palette first and then select a color from it as the background.
We recorded the time spent on each task and then asked the
participants to rate the ease of use of these tools after the
experiment. Then, for each participant, we assigned the colors
of their result palettes to two charts and asked them to rate
their satisfaction. Finally, we interviewed them and asked
about their feelings regarding using these tools. The detailed
data and the generated visualization instances are provided in
the Appendix for reference.

Time Spent The time spent in (task1, task2) of different
tools are as follows: Adobe Photoshop Color Picker (79s±57s,
97 s±43s), Colorgorical (108s±60s, 97 s±43s), Palettailor
(96s±19s, 125 sp474/¿48s), and our system (50s±14s, 33

s±19s). The generation efficiency values of different users
vary greatly, resulting in large standard deviations in the time
cost data. It can be observed that the participants took the
least time to obtain a satisfactory palette using our system,
especially in task 2. Participant 1 commented, “When using
Colorgorical, if I’m not satisfied with a result, I have to retune
the parameters. However, in fact, I’m not sure about the use
of some parameters...The next result is somewhat random for
me.”

Ease of Use The participants subjectively rated the ease of
use of these tools on a five-point scale (Colorgorical: 3±0.89,
Palettailor: 3.2±0.75, our system: 4.2±0.4). Our system
received the highest score, possibly because users only have
to set the size of the palette, and it is easy for them to choose
images with harmonious colors. For nonprofessional users,
some of the parameters in Colorgorical and Palettailor may
be difficult to understand or utilize. Participant 1 mentioned
that “The Colorgorical and Palettailor provide parameters in
multiple aspects, but they lack recommendations. It is hard
for me to tell which parameters are more important...When
browsing and selecting images, I feel relaxed and delighted.”
Participant 4 said our system is “like a point and shoot camera
that everyone can use.”

Satisfaction For each participant, we colored 4 donut charts
and 4 rose charts using palettes they generated in two tasks
and asked them to rate their level of satisfaction regarding the
charts on a five-point scale. In task 1, the palettes the users
designed themselves received the highest satisfaction scores,
followed by those generated by our method (Adobe Photoshop
Color Picker: 3.6±0.8, our system: 3.5±0.8, Colorgorical:
2.4±0.49, Palettailor: 2.2±0.4). In task 2, our method received
the highest scores, which are higher than those in task
1 (our system: 4.5±0.49, Adobe Photoshop Color Picker:
3.2±0.4, Colorgorical: 3±1.4, Palettailor: 2.2±0.98). Some
of the background colors specified by the participants are not
appropriate for the generated charts. Participant 2 said, “It
is likely to choose an inappropriate background color if I
cannot preview the chart. However, I can infer from an image
whether its background is a good match.”

6.2 Reproducing Experiment

Compared with other image-based palette extraction work,
our method achieves finer-grained color clustering in salient
regions, which enables the result to contain some important
colors even though the colors occupy small areas in the
original image. This feature is similar to the design patterns of
professional when extracting palettes from images. In addition,
we adjusted the results according to color harmony principles
to ensure that the final palette is more in line with the aesthetic
trends of professional designers.

We collected 200 high-quality works that contain paired
images and palettes produced by professional designers from
the internet. Then, we compared the results from our method
with the results generated by the K-means method [17] and
the method proposed by Chang et al. [15] and to the target
results designed by the designer. We calculated the distance



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

between two palettes using the minimum color difference
model [69] to evaluate their similarity.

0.2

D1

O1

K1

C1

D2

O2

K2

C2

Fig. 12. The palettes produced by professional designers
(D), our method (O), K-means (K), and the improved color
clustering algorithm of Change et al.(C).

Figure 12 shows two examples. It is worth noting in the
examples that our method can extract some small but important
colors, such as blue-violet and yellow, which are reflected
by the foam in the left example. Our palette in the right
example has a softer lightness variation compared to the other
methods. A detailed comparison of palette distance is shown
in Table 1. Our results are more similar to the designer’s
choices in general. However, there are still 16 palettes that
differ greatly from the designer’s results, as shown in the
Appendix. After analyzing them we found two main reasons
for this difference, as follows: (1) our method extracted more
colors from the foreground of the image, while the designer
selected colors more evenly form these images; and (2) when
the image contains many neutral colors, the designer’s palettes
tend to be colorful, while ours are not because our method
does not prioritize colorful colors.

TABLE 1
The palette distance between the results of previously
described methods and that generated by designers.

Method K-means Chang et al. Our

Average palette distance 196.88 196.04 186.60
Number of similar
instances (Palette
Distance ≤ 180)

14 14 45

Number of dissimilar
instances (Palette Dis-
tance ≥ 200)

74 74 16

6.3 Color Generation for Extreme Cases

The experiments in this section consider some extreme input
images and display platforms of visualization. The results
show that our method can also perform well in these special
situations.

6.3.1 Input Images with Poor Quality
Our method is image-based, so the quality of the results
will inevitably depend on the input image to a certain extent.
Images with high aesthetic quality are more likely to generate
excellent results, but users may select inappropriate images as
input. We analyzed some of the worst situations and divided
the discussion into two situations. In the first situation, the

aesthetic quality of the image itself is high, but the image
quality is poor, which may result from a large amount of
noise or low resolution. In the second situation, the image is
of low aesthetic quality, and good aesthetic perception cannot
be achieved.
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Fig. 13. Each image set from left to right shows the
original image, the image with 30% multicolor noise, the
details in the noisy image, and the resulting palettes
generated by our (O), Chang et al.(C), Adobe’s(A) and
K-means (K) methods.

For the first situation, we added noise to the original image
and compared the difference between the results generated
by our method and the K-Means, Chang et al., and Adobe’s
methods. Specifically, we used the noise addition function in
the Adobe Photoshop filter tool to add 30% of the multicolor
noise in a Gaussian distribution. For the processed image, the
visual perception is not obviously changed due to the darker
background color tone. We used the methods mentioned above
to generate the color palette. As shown in Figure 13, the
palettes extracted by other methods are largely affected by
noise, and our method overcomes this negative influence.

The second situation is that we selected some “ugly”
images as input. These “ugly” input images come from the
dataset AVA [70]. AVA is an aesthetic evaluation dataset in
which each image contains a score rating from approximately
200 individuals, and the score ranges from [1,10]. The
scorers include not only ordinary image enthusiasts but also
professional designers, so the scoring is universal to measure
the image aesthetic quality. The higher the score is, the
higher the aesthetic quality of the image. We calculated a
weighted average of these scores to obtain the aesthetic score
corresponding to each image. We selected some images with
scores below 3, which means that more people perceive this
image as “ugly”. The results are shown in Figure 14. We can
see that even with a poor input, our model can make certain
adjustments to the output colors to make the final results
pleasant.

6.3.2 Generating Palette for Special Display Platforms
Currently, low-power e-ink screens are widely used, and some
paper media, such as newspapers and books, are printed in
black and white. To optimize the display effect of visualization
works on these special platforms and improve the reading
efficiency of color-weak or color-blind people, we tried to



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Fig. 14. Palettes generated with low aesthetic quality
images.

ensure that the Bavarian distance (Equation 10) between any
two CIELCh colors in lightness and chroma is greater than
3, which helps the colors remain distinguishable even in
grayscale.

TABLE 2
We converted the colors extracted by different methods
to grayscale and calculated the difference between the

two closest colors in each palette.

Method K-
means

Chang
et al.

Adobe Our

Average gray difference 25.23 20.31 10.70 22.65
Instance number with
good discriminability
(Gray difference ≥ 25)

93 67 14 78

Instance number with
poor discriminability
(Gray difference ≤ 10)

36 68 114 16

We designed an experiment that qualitatively evaluates the
discriminability of color palettes in grayscale space. For an
RGB color (r,g,b) (r ∈ [0,255],g ∈ [0,255],b ∈ [0,255]), we
converted the color to a single-channel grayscale color gray
by gray = 0.299∗ r+0.587∗g+0.114∗b. After conversion,
we examined the distance between the two closest colors in
the palette. We crawled 200 images from the internet and
used several image-based color extraction methods to generate
results; see Table 2 for details. The methods of Chang et al.
and K-means focus on colors with large differences in the
image, while Adobe’s method is more similar to ours, as
it also considers the harmony and aesthetic characteristics
of the result. Therefore, the palettes generated from the
K-means methods perform better than our method in this
experiment. Adobe’s method performs the worst among all
methods. Although our average result in this experiment is
not as good as that of the K-means method, the number of
instances with poor discriminability is less, benefiting from
our selection strategy, which avoids colors with very similar
lightness and chroma values.

7 LIMITATIONS AND DISCUSSION

Our current method still has some limitations. First, the
number of colors in the generated palette can be specified
in our method, but the recommended range is 4∼ 7. If the
specified color number is too high (n ≥ 10), similar colors
tend to appear in the results for most input images, which may

affect the separability of categories in visualization instances.
If the number of colors is too small, our selection strategy
may ignore some areas with lower visual significance of the
image. Our selection approach can be further improved to
strike a balance between inheriting the overall visual style of
the image and extracting colors with high visual saliency.

Second, we have designed different color assignment
strategies for multitype visualizations, but limitations on the
input images still exist. For discrete data, if the input image
presents a narrow color range, the number of colors that
meet the requirements in the selection process may not be
sufficient, which can result in an undesirable palette. For
visualizations of continuous data, we do not suggest inputting
images with complicated colors. If the input image contains
multiple tones, the result with two main colors might not
well inherit its visual style. We will work on designing more
flexible color encoding strategies to accommodate various
visualization cases better in subsequent research.

Third, the visual style of our result only depends on the
input image and cannot be styled on the same input. For
example, users cannot specify the style of the results to be
colorful, bright or muted after inputting an image.

8 CONCLUSION
Images provide rich color inspiration, carrying semantic
information that can inspire associations. The image-driven
approach is a feasible and effective way to generate a
harmonious and context-aware color palette. We have proposed
an image-based approach to generate harmonious color
palettes for visualization. We put forward a unique color
clustering method based on visual importance and hue value,
which enables more fine-grained color extraction in the
subject area than in the background area of an image. The
subsequent color selection and optimization can generate
harmonious visualization palettes. We recommend different
color combinations according to the different context forms
of the visualization and design two color optimization and
assignment strategies for visualizations of different data types
to encode colors to data in visualizations. Through evaluation,
we demonstrated the usability of our method in visualization
tasks and the harmony, stability, and wide applicability of
the generated palette. We hope that this work can provide a
reference for visual color design, stimulate design inspiration,
and provide convenience in use for people of different skill
levels. Our code is open-source at https://github.com/Shuqi-
67/ColorPipette.
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