
VisCode: Embedding Information in Visualization Images using
Encoder-Decoder Network

Peiying Zhang, Chenhui Li, and Changbo Wang

DECODE

PNG/JPG

Visualization
Retargeting

Visualization Retargeting

DECODE

Metadata
1. Url
2. Designer
3. Revision Log

PNG/JPG

DECODE

Interaction PNG/JPG

DECODE

PNG/JPG

a

b

c

d

Fig. 1. VisCode can be used in a variety of practical applications. The input is a static visualization image. According to the encoding rules, we
can retarget the original visual style after performing the decoding operation. Visualization retargeting includes representation (a) and theme
color (b). VisCode can be also applied to metadata embedding as shown in (c) and large-scale information embedding. After decoding the
source code into a static image, we can quickly build a visualization application and apply a common interaction such as selection as shown in
(d).

Abstract—We present an approach called VisCode for embedding information into visualization images. This technology can implicitly embed
data information specified by the user into a visualization while ensuring that the encoded visualization image is not distorted. The VisCode
framework is based on a deep neural network. We propose to use visualization images and QR codes data as training data and design a robust
deep encoder-decoder network. The designed model considers the salient features of visualization images to reduce the explicit visual loss
caused by encoding. To further support large-scale encoding and decoding, we consider the characteristics of information visualization and
propose a saliency-based QR code layout algorithm. We present a variety of practical applications of VisCode in the context of information
visualization and conduct a comprehensive evaluation of the perceptual quality of encoding, decoding success rate, anti-attack capability, time
performance, etc. The evaluation results demonstrate the effectiveness of VisCode.

Index Terms—Information visualization, information steganography, autocoding, saliency detection, visualization retargeting.

1 INTRODUCTION

For a long time, information visualizations were created by artists, designers
or programmers, and most of them were disseminated in the form of bitmap
images. Many researchers have performed many studies on specific as-
pects of the design of information representations, such as the visualization
layout, the color theme, and more specific explorations. However, with
the development of fast network technology, the spread of visualization
images has encountered two problems. One is that the copyright problem
for visualization has not been effectively solved. Most designers use ex-
plicit icons to present copyright information, but this method affects the
aesthetics of a chart and can obstruct important information. Moreover,
when a visualization is converted into a bitmap image, the data in the vi-

• Peiying Zhang, Chenhui Li, and Changbo Wang are with School of Computer
Science and Technology, East China Normal University. Chenhui Li is the
corresponding author. E-mail: chli@cs.ecnu.edu.cn.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication xx
xxx. 201x; date of current version xx xxx. 201x. For information on obtaining
reprints of this article, please send e-mail to: reprints@ieee.org. Digital Object
Identifier: xx.xxxx/TVCG.201x.xxxxxxx

sualization are converted into pixels, and the original data are completely
lost. Although several researchers, such as Poco et al. [40], have applied a
pattern recognition approach to visualization images to retarget the color
theme, the effectiveness of data recognition is still related to the form of
visualization. As an alternative approach, information steganography [13]
(a means of implicit information embedding) for visualization images has
potential for copyright protection and source data preservation.

Information steganography has a very meaningful practical application in
the field of visualization design. In many forms of information propagation,
such as social networks, blogs, and magazines, bitmap images are used most
frequently and do not require the support of an additional web server. After
conversion into an image, the original code used to generate the image is
lost, thus increasing the difficulty of modification and visualization redesign.
Similar difficulties also arise when designers and programmers collaborate.
However, if a designer could implicitly embed the key visualization code
into an image during the visualization design period, then the dissemination
and revision of the visualized information would not require two different
types of media (image and text), which would help programmers integrate
such visualizations into big data analysis systems. Another potential ap-
plication is the visualization retargeting. Visualization retargeting is very
useful for the creation of visualizations. On the one hand, it reduces the

designer’s workload. On the other hand, it broadens the artist’s creative
space. Fig. 1 shows four practical applications of our work.

Information steganography is different from digital watermarking, which
is a technique for hiding information in a piece of media (usually an image).
As described in the book of Cox et al. [13], steganography has a long history.
Researchers have proposed a variety of methods of embedding information
in images for diverse steganographic applications. As surveyed by Ghadirli
et al. [17], the techniques used in image steganography include chaos-based
methods, permutation-based methods, frequency-domain methods, hash-
based methods, and evolutionary methods, among others. The continuous
development of steganographic technology and the recent emergence of
deep learning technology have enabled the extension of image steganog-
raphy into broader areas of application. To our knowledge, however, few
researchers have studied how to embed information in visualization im-
ages. Related research has focused only on the recognition of visualization
images [20, 39]. Although many methods of steganography have been
proposed for natural images, the features of data visualizations are quite
distinct. First, most of these models are based on natural images and make
use of rich and mature features, while visualization charts usually have
clean backgrounds and clear visual elements, increasing the difficulty of
encoding and decoding. Second, Bylinskii et al. [11] demonstrated that the
visual importance of visualizations depends not only on the image context
but also on higher-level factors (e.g., semantic categories), which is different
from that of natural images.

We present a novel information embedding approach for visualization
images, called VisCode. VisCode is an end-to-end autoencoding method
that implicitly encodes information into a visualization image with little
visual error. First, we propose to use QR codes as a form of media in
which to store information to increase the success rate of decoding. We
create a dataset consisting of visualization chart images and QR codes to be
used for autoencoder training. Second, we outline a deep neural network
architecture based on saliency detection that is designed to perform stable
information steganography for visualization images. Information in the
form of QR codes is adaptively encoded into the visually nonsignificant
areas of a visualization image by means of a saliency-based layout algorithm
to reduce the visual traces of this encoding. We also report the successful
application of the VisCode method to three practical application scenarios:
metadata embedding, source code embedding, and visualization retargeting.
Based on the embedded information, the designer can easily manage and
modify a graphical chart produced using this method, for example, to
generate different versions of the visual design. Additionally, our VisCode
system can convert static visualization images into interactive images to
facilitate more accurate visualization comprehension. Furthermore, our tool
supports visualization retargeting and improvement in accordance with user
preferences, such as modification of the color palette style and the form of
visualization.

Our experimental results and evaluations show that VisCode has great
potential for application in information visualization. In summary, our
contributions include three aspects:

(1) We define the problem of information embedding in the context of
information visualization. We verify the practical importance of this
study in pioneering a new application domain.

(2) We outline a deep learning framework that can be used to implement
personalized steganography for information visualization images. This
framework can achieve high-quality large-scale information hiding.

(3) We present a set of evaluations to demonstrate the effectiveness of our
proposed framework from multiple perspectives, including user friend-
liness, indices of encoding quality and decoding success, steganogra-
phy defense, and time performance.

2 RELATED WORK

2.1 Information Steganography
Information steganography, the art of concealing secret data within other
carrier data, has numerous applications (e.g., digital watermarking, covert
transmission, and access control). The most popular form of steganography
is to embed secret information by slightly perturbing carrier images, videos,
3D models, texts, or audio data while ensuring that these perturbations are
imperceptible to the human visual system. Instead of processing popular
forms of media such as videos and images, COBRA [21] encodes data into a

special type of colorful 2D barcode to improve the efficiency of transmission
between a smartphone screen and camera. Yang et al. [57] outlined an
effective steganography algorithm using a 3D geometric model as the carrier.
Their algorithm hides information in the histogram of the vertex coordinates
of the 3D model and can achieve robust performance. Jo et al. [27] utilized
light signals from displays and cameras to transmit information. Xiao et
al. [56] proposed an interesting method of directly embedding messages
into the letters of text. The glyphs of fonts are perturbed to encode secret
information, and this information is decoded by recognizing characters
by means of an optical character recognition (OCR) library. However,
this method has two limitations: different perturbation rules are needed
when processing different font types, and sufficient resolution of the text
document is necessary when decoding a message. Hota and Huang [4]
adopt an image watermarking technique to embed the information into
a scientific visualization. It seems that their work is similar to VisCode.
However, the variety of data types, representations, and propagations of the
information visualizations pose new challenges. The steganography work
of information visualization is different from scientific visualization.

In summary, previous research on information steganography has investi-
gated a variety of carriers, but there is less previous study on information
steganography for information visualization. In the information visualiza-
tion field, steganographic applications of personalized information visual-
ization require a specially designed information steganography approach
that is different from previous methods.

2.2 Image Steganography
Traditional Steganography Images are the most widely processed and ex-
changed information carriers in the steganographic domain. Early methods
used spatial-domain techniques, such as bit plane complexity segmentation
(BPCS) [28] or least-significant-bit (LSB) substitution [33]. These meth-
ods involve applying small variations to pixel bits, which are not visually
obvious. However, they are easily detected by statistical analysis due to
their fixed principles of operation. On the basis of digital signal processing
theory, some approaches have been developed for embedding messages in
the frequency domain. Almohammad et al. [3] hid information based on
the discrete cosine transform (DCT). To avoid detection through statistical
analysis, many steganography algorithms define special functions to opti-
mize the localization of embeddings. Highly undetectable steganography
(HUGO) [37] minimizes distortion by calculating a variable weight for
each pixel based on high-dimensional image models. The Wavelet Ob-
tained Weights (WOW) algorithm [24] measures the textural complexity of
different image regions with directional filters.
Deep Steganography Recent studies have achieved impressive results by
combining deep learning with steganography. Pibre et al. [38] demonstrated
that the results obtained from deep neural networks (DNNs) surpass the
conventional results based on handcrafted image features. Several methods
utilize a DNN as a component in combination with traditional steganography
techniques [25, 48]. More recently, end-to-end steganography networks
have become popular. Inspired by autoencoders, Baluja et al. [5] learned
feature representations to embed a secret image into a cover image. Hayes et
al. [22] utilized adversarial training to generate steganography results. Some
studies have also considered sources of corruption in digital transmission,
such as JPEG compression [60] and light field messaging (LFM) [53]. Most
of these models are based on natural images and make use of rich and
mature features. We focus on encoding a large amount of data into images
designed for visualization purposes while preserving their visual perceptual
quality.

2.3 Retargeting of Information Visualization
Early work on information visualization focused on data representations.
Tufte [49] introduced the basic principles of quantitative chart design, em-
phasizing that the purpose of chart design is to allow users to quickly obtain
rich and accurate information and, consequently, decoration that is not
related to the data is unnecessary. Tufte’s research illustrates the importance
of data and the user’s understanding of charts in information visualization.
In contrast to Tufte, Wilkinson [54] offered a method of describing charts
at a higher level of abstraction. This abstract method involves categoriz-
ing charts based on the visual characteristics of the data and geometric
figures to simplify the architecture of the drawing system. In recent years,
scattering, network diagrams, regions, dynamics, metaphors, tools, and

Input

Graphical Chart

Information

Visual Importance
Network

Encoder Network

Transmission

Decoded Information

({“DataType”: “CopyRightInfo”,
“CreatedDate”: “2020-03-xx”,
“ModifiedDate”: “2020-03-xx”,
“Owners”: “xxx”,
“Size”: “1.3MB”,
“DetailedData”: [{“DataType”: “LineChart”,
“DataIndex”: 0, “Xaxis”:{“Year”: 1947},
“ Yaxis”:{“Value”: 0} } …], … ,
}…)

Information

({“DataType”: “CopyRightInfo”,
“CreatedDate”: “2020-03-xx”,
“ModifiedDate”: “2020-03-xx”,
“Owners”: “xxx”,
“Size”: “1.3MB”,
“DetailedData”: [{“DataType”: “LineChart”,
“DataIndex”: 0, “Xaxis”:{“Year”: 1947},
“ Yaxis”:{“Value”: 0} } …], … ,
}…)

Encoded Image

Graphical Chart

Output

Decoder
Network

a b

c

d

f

e

g

Fig. 2. The main components of our VisCode system. First, the visual importance network (b) processes the input graphical chart (a), which can facilitate
salient feature detection of the visualization and output a visual importance map. Next, an encoder network (c) embeds secret information in the graphical
chart (a). The carrier chart image and the QR code image are embedded into vectors by the feature extraction process. Then, these two vectors are
concatenated (as the yellow rectangle shown) and fed into the auto-encoding stage. The encoded image (d) is then sent to the user (e), and the user can
send it to others by digital transmission. When a user wishes to obtain the detailed information hidden in the chart, the encoded image can be uploaded to the
decoder network (f). After data recovery and error correction, the user receives the decoded information (g).

Training dataset Test dataset

Li
ne Bar Pi

e

Sc
at

te
r

M
ap

Rad
ar

H
ea

tm
ap

Gra
ph

Tr
ee

O
th

er
s

0%

5%

10%

15%

20%

25%

30%

35%

Fig. 3. Distribution of different categories in our visualization dataset.

other visualization techniques have been proposed, and the capabilities of
information visualization are becoming increasingly close to ideal. With
the development of big data and deep learning technologies, visualization
retargeting approaches have been presented to aid in visualization redesign.
Poco et al. [40] outlined an approach for extracting color mappings from
static visualization images. They evaluated their technique on a variety of
visualization types. Later, an end-to-end system was proposed by Poco
and Heer [39] for extracting information from static chart images. Similar
works include iVoLVER [32] and Chart Decoder [14], and Enamul and
Maneesh [16] have similarly offered a deconstruction tool for extracting
data and visual encodings from D3 charts. In addition to common usage,
functionalities intended to support visually impaired users have also been
considered; for example, Choi et al. [12] presented a DNN-based method of
extracting the features of a chart to help visually impaired users comprehend
charts.

To the best of our knowledge, less previous work has addressed steganog-
raphy in the context of information visualization. In this paper, we imple-
ment visualization retargeting from a novel perspective using information
steganography.

3 OVERVIEW

An essential goal of data visualization is to improve the cognition and per-
ception of data. Compared with the direct transmission of a large amount
of raw data, images are more easily and widely processed carriers for
disseminating visual information on the Internet. However, after the origi-
nal detailed information (e.g., data points, axis text, and color legends) is

converted into pixel values, it is difficult to reconstruct the original infor-
mation from the resulting images. To solve this problem, we attempt to
encode additional information into the carrier visual designs with minimal
perturbation.

In this paper, we propose VisCode, a framework for embedding and
recovering hidden information in a visualization image using an encoder-
decoder network. Fig. 2 shows the VisCode model, which has 3 main
components:

• Visual Importance Network The preparation stage includes a visual
importance network and a text transformation model. Since the se-
mantic features of data visualizations are quite different from those
of natural images, we use a network to model the visual importance
of the input data graph. The resulting importance map is applied as a
constraint in the encoder network. Accounting for error correction, we
convert the plain message to be embedded into a series of QR codes
instead of binary data.

• Encoder Network The encoder network embeds the message within
the carrier image and outputs the resulting coded image. In this
network component, the carrier chart image and the QR code image
are embedded into vectors by the feature extraction process. Then,
these two vectors are concatenated and fed into an autoencoder. The
resolution of the output coded image is the same as that of the input
carrier image.

• Decoder Network The decoder network retrieves the information from
the coded image. Users can share coded images with others through
digital transmission. After such a coded image is decoded, the final
information is obtained from the decoded QR code image with error
correction.

3.1 Definition
Our VisCode model assumes that, given an information visualization image
Ic (also called the carrier image) and a plain message Ts, the coded image
Ic
′
output by the encoder network Enc() should be perceptually similar to Ic

according to human vision, while the recovered message Ts
′

output by the
decoder network Dec() should be as accurate as the input Ts. Considering
error correction, we convert the input plain message Ts to the QR code image
instead of binary data. That is Is = PrepQR(Ts), with PrepQR() being the
preparation of QR code from the text, Is being the transformed QR code

(a) Visual Importance Network

Basic Resblock Conv, BatchNorm, ReLU RRM

E

256x256x(64+64)

Conv(128, 64, 1x1)

Conv(64, 64, 3x3)

BN, ReLU

BN, ReLU

D

(b) Encoder (c) Decoder

Input
256x256x3 Carrier image

256x256x3 Secret QR code

Conv(3, 64, 3x3)

Conv(64, 64, 4x4) stride = 2

feature
vectors

ReLU

ReLU

Conv(64, 32, 3x3)
BN, ReLU

ConvT(32, 32, 4x4) stride = 2
ReLU

Conv(32, 16, 3x3)

BN, ReLU

Conv(16, 3, 3x3)
Tanh

256x256x3 Encoded image Output

Conv(32, 64, 3x3)

BN, ReLU

BN, ReLU

Input

Conv(3, 32, 3x3)

Conv(32, 32, 3x3)

Conv(64, 32, 3x3)
BN, ReLU

ConvT(32, 16, 3x3)

BN, ReLU

Conv(16, 3, 3x3)
Tanh

256x256x3 Decoded QR code Output

256x256x3 Encoded image

BN, ReLU

Fig. 4. VisCode system contains three network models such as visual impor-
tance network, encoder network, and decoder network.

image (also called the secret image). The output of the decoder network
is Is

′
, and Ts

′
= PostQR(Is

′
), where PostQR()is the process of converting a

recovered QR code image into text form with an error-correction coding
scheme, and Ts

′
is the result text. Formally, we attempt to learn functions

Enc() and Dec() such that:

minimize
∥∥∥Ic− Ic

′
∥∥∥+α

∥∥∥Is− Is
′
∥∥∥ (1)

where Enc(Ic, Is) = Ic
′

and Dec(Ic
′
) = Is

′
represent the two functions of

interest. α is a scalar weight.

4 METHODS

4.1 Dataset
Information Visualizations The features of data visualization images are
quite different from those of natural images. Hence, to build our data visual-
ization dataset for training, we used several popular chart and visualization
libraries, such as D3, Echarts, AntV, and Bokeh, to generate carrier visual
designs in 10 categories (e.g., “Bar Chart” or “Scatter Chart”). We also
selected a subset of images from MASSVIS [8], a dataset of visualizations
collected from a broad variety of social and scientific domains. The resolu-
tions of these images are expressed as H×W , where H,W ∈ [300,3000].
We selected 1500 images and split them into 1000 images composing the
training set and 500 images composing the test set. Fig. 3 shows the
distribution of this visualization dataset.
QR codes It is necessary to use an error-correction coding scheme when
recovering secret information from the coded images. Shannon’s [45]
foundational work on coding theory for noisy channels has inspired many
later studies. Reed et al. [42] proposed a coding scheme based on a poly-
nomial ring. Boneh et al. [6] utilized the Chinese remainder theorem to
decode Reed–Solomon codes in polynomial time. BCH codes [9] are error-
correction codes for binary group data. However, encoding binary data
directly into carrier visual designs may result in obvious perturbations of

(a) Original chart (b) VisCode (c) SteganoGAN (d) StegaStamp

Fig. 5. Comparison of the encoded image quality with other methods.

the original appearance. Fig. 5 presents an illustrative example comparing
SteganoGAN [58] and StegaStamp [47]. SteganoGAN [58] utilizes an
adversarial training framework to embed arbitrary binary data into images
based on Reed–Solomon codes. StegaStamp [47] hides hyperlink bitstrings
in photos using BCH codes. In Fig. 5, we can see that SteganoGAN may
cause color variations in images with rich color content, while StegaStamp
may generate visible noise when embedding information. Moreover, visu-
alization charts usually have clean backgrounds and clear visual elements,
which leads to a high decoding error rate in SteganoGAN. Due to these
limitations, the two methods StegaStamp and SteganoGAN are not suitable
for embedding information in data visualizations.

Barcodes are one of the most popular ways to transfer text information
between computing devices. In our implementation, we convert arbitrary
binary data provided by users into two-dimensional barcodes (QR codes)
as our error correction coding scheme. QR codes [52] have essentially
the same form as 2D images and therefore offer better visual effects than
Reed–Solomon codes or BCH codes. QR codes have many advantages,
such as a high capacity, a small printout size, and good dirt and damage
resistance. We refer the reader to the ISO/IEC 18004 specification [1] for
more technical details of QR codes. For our QR code dataset, we chose
“Binary” as the information type and randomly generated 1500 QR code
images with various character lengths from 1 to 2900 and various error
correction capability levels of ‘Low’ (‘L’), ‘Medium’ (‘M’), ‘Quality’ (‘Q’),
and ‘High’ (‘H’). Raising this level improves error correction capability,
but also increases the size of QR code when embedding the same amount
of data.

4.2 Visual Importance Map
At a high level, the goal of the encoder network is to embed a large amount
of information into a graphical chart while leaving the coded image per-
ceptually identical to the original. A straightforward solution is to train a
model to minimize the mean squared error (MSE) of the pixel difference
between the original chart and the encoded chart [5]. However, this metric
is unreliable for assessing the visual quality of a chart [50]. For example,
the encoder may generate visible noise in important areas since the MSE
metric weights all pixels equally. To solve this problem, we introduce a
visual importance map as a perceptual constraint to preserve the visual
quality of the carrier chart image when embedding information.

Although many methods of saliency prediction have been proposed for
natural images, the features of data visualizations are quite distinct. The
visual importance of visualizations depends not only on the image context
but also on higher-level factors (e.g., semantic categories) [11]. A visual
importance map assigns different scores to different regions of an image,
which can help to preserve the visual quality of the important content in the
encoding stage.

Inspired by Bylinskii et al. [11], we build a prediction model based
on the MASSVIS dataset with eye movement annotations [7]. Instead of

Table 1. Module Configurations of QR codes

Number of Characters ECC Level Resolution

1∼ 350 ’High’ 100×100

351∼ 1000 ’Quality’ 200×200

1001∼ 2000 ’Medium’ 200×200

2001∼ 2900 ’Low’ 300×300

Table 2. Visual Importance Map Comparison

Method Dataset CC ↑ RMSE ↓ R2 ↑
Bylinskii et al. [11]

MASSVIS

0.686 0.165 0.369

Ours
Lbce 0.866 0.123 0.715
Lssim 0.866 0.126 0.714

Lbce +Lssim 0.868 0.117 0.720

(a) Input chart (b) Bylinskii et al. (c) Ground Truth (d) Ours

Fig. 6. Visual importance maps predicted by our network are more similar to
the distribution of ground truth.

leveraging an original fully convolutional network (FCN) architecture, we
fine-tune a state-of-the-art salient object detection network, BASNet [41].

As shown in Fig. 4(a), we use a network architecture the same as BAS-
Net [41], based on U-Net [44] with a multiscale residual refinement module
(RRM). Our visual importance network receives a three-channel RGB chart
image with a resolution of H×W as input and outputs a one-channel H×W
visual importance map. Similar to ResNet [23], we use basic ResBlocks to
obtain feature maps with different resolutions. Subsequently, we upsample
the feature maps from the previous stage and concatenate them. The last
feature map is then sent to the RRM for refinement. We refer the reader to
the description of BASNet [41] for more details.

The aim of the original BASNet is to detect salient objects, while our
goal is to obtain a real-valued visual importance map describing the impor-
tance scores of all pixels. Our training process is based on the MASSVIS
dataset [7]. Accordingly, to obtain more accurate high-level semantic con-
text information and low-level details, we use a hybrid training loss:

Lprep = Lbce +Lssim (2)

where Lbce represents the BCEWithLogits loss [15] and Lssim denotes the
structural similarity index (SSIM) loss [51].

Given the ground-truth importance map at each pixel p, Gp ∈ [0,1], over
all pixels p = 1, ...,N, the BCEWithLogits loss is defined as:

Lbce(G,V) =− 1
N

N

∑
p=1

(Gp logVp +(1−Gp) log(1−Vp)) (3)

where Vp is the prediction of the visual importance network. The BCEWith-
Logits loss is defined in a pixelwise manner and facilitates the semantic
segmentation of all pixels.

Let x = {xp|p = 1,2, ...,N} and y = {yp|p = 1,2, ...,N} be two corre-
sponding image patches extracted from the ground-truth importance map
Gp and the predicted result Vp, respectively. Let µx and µy be the means of
x and y, let σ2

x and σ2
y be their variances, and let σxy be their covariance.

The SSIM is defined as:

SSIM(x,y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(4)

where C1 = 0.012 and C2 = 0.032 are scalar constants. The SSIM loss is
computed as Lssim = 1−SSIM(x,y). This loss can help capture the struc-
tural information of the input chart image as the weights of the boundaries
of visual elements increase.

The hybrid loss presented here helps us preserve the multiscale features
of the visual importance map. Since we aim to get a visual importance map
that is similar to the distribution of ground truth with smooth gradient for
pixels, we discard IoU loss used in BASNet [41]. For evaluation, we use the

same metrics and test dataset as in the report by Bylinskii et al. [11]. Cross
Correlation (CC) is a common metric used for saliency evaluation. Root-
Mean-Square Error (RMSE) and the R2 coefficient measure how correlated
two maps are. We conduct an ablation study over different loss terms to
demonstrate the effectiveness of the hybrid loss. The experimental results
are shown in Table 2. Higher CC values, lower RMSE values and higher R2

values are better. As we can see, the hybrid loss outperforms others. Fig. 6
demonstrates that the visual importance maps predicted by our network
are more similar to the ground truth distribution than those of Bylinskii et
al. [11].

4.3 Encoder and Decoder
The encoder network is designed to embed information within a carrier chart
image while minimizing perturbations in the encoded image. The decoder
network recovers the embedded secret information from an encoded image.
Inspired by DeepSteg [5], we use a network structure similar to that of an
autoencoder. As shown in Fig. 4(b), the feature vectors of the input carrier
chart image and the QR code image to be embedded are first extracted using
3×3 filters and 4×4 filters and the ReLU activation function [34]. Then,
these two vectors are concatenated and fed to the next 3 convolutional layers,
followed by batch normalization (BN) [26] and a ReLU activation function.
After upsampling with 4×4 filters (stride = 2) and a ReLU function, the
resolution of the output encoded image is the same as that of the input chart
image. Then we use two convolution layers with 3× 3 filters and a tanh
function to obtain the final output encoded image.

The architecture of the decoder network (Fig. 4c) is simpler than that
of the encoder network. The encoded chart image is passed through a
series of convolutional layers with 3×3 filters to produce the decoded QR
code image as the final output. After error correction, we can obtain the
reconstructed information in the same form as the original input message.

Different from DeepSteg [5], we introduce the visual importance map to
supervise the encoder network. The encoder loss is defined as:

LEnc =V �Lmse =
1
N

N

∑
p=1

(Vp� (Icp − Icp

′
)2) (5)

Here, Vp is the predicted visual importance map, which can be regarded
as a weight matrix; regions with higher visual importance scores will have
higher weights. Ic is the input carrier chart image, and Ic

′
is the output

encoded image. N is the number of pixels.
The decoder network is supervised with a cross-entropy loss. Thus, we

define the joint loss as:

L joint = LEnc +αLDec =V �Lmse(Ic, Ic
′
)+αLmse(Is, Is

′
) (6)

where Is is the original input QR code image and Is
′

is the reconstructed
result of the decoder network. α is the weight of the decoder loss, which
indicates a tradeoff between the visual quality of the encoded images and
the decoding accuracy. Higher α results in higher decoding accuracy and
decreased perceptual quality. α is set to 0.25 in our implementation.

During the training process, we train the encoder network and decoder
network simultaneously. That is, the joint loss incorporates both the visual
quality of the coded image and the reconstruction error. In this study, our
encoder-decoder network needed a smaller structure and fewer parameters
to fit the dataset since our visualization data available for training were
limited compared with natural images. We trained our encoder and decoder
networks using the aforementioned dataset consisting of data visualizations
and QR codes. During training, the images were resized to 256×256 with
antialiasing. We used the Adam optimizer [29] with an initial learning rate
of lr = 1e−3. We trained the encoder and decoder networks until the joint
loss converged, without utilizing the validation set.

In the testing process, the encoder and decoder can be used separately.
Fig. 8 shows an example of results obtained using the encoder. The coded
image looks identical to the original chart image since the perturbations in
the coded image are unobservable to human perception. We enhance the
intensity of the residuals (Fig. 8c) between the input chart image (Fig. 8a)
and the output coded image (Fig. 8b) by a factor of 10 times to more clearly
show the differences. The results demonstrate that our VisCode model can
embed information while preserving the perceptual quality of the original
chart image.

(a) Input chart (b) Visual importance map (c) Regions with intersection (d) Region proposal result (e) Decoding process

[[0, 200, 0, 200], [0, 200, 1020, 1220], [0, 200, 300, 500, …]

locate and retrieve other
QR codes with informationQR code with positions

Fig. 7. Ilustration of the embedding region proposal algorithm. We localize the optimal embedding regions based on the visual importance map and avoid
overlaps of the proposal region boxes. The position QR code makes the decoding process more efficient and accurate.

4.4 Large-Scale Data Embedding
Our VisCode system is designed to take a chart image with a resolution
of H×W and arbitrary binary data as input, making it suitable for various
actual scenarios. Embedding a large amount of information in an image
is a challenging problem because it is easy to generate obvious noise or
cause deviations in color or texture. To overcome this challenge, Wu et
al. [55] proposed learning the conditional probability distribution of the
original image. However, this method may affect viewers’ understanding of
a chart since semantic information such as color maps and data points are
particularly meaningful in data visualizations. Accordingly, we propose a
novel approach for the large-scale embedding of information in regions to
which the human visual system is insensitive.

Although arbitrary binary data can be accepted as input information, we
focus on a text message to facilitate the explanation. Suppose that the user
inputs text with a length of LenT characters. We first split the text into
several blocks:

NumB = dLenT /ηe , LenB =

{
LenT /NumB, other blocks
LenT mod NumB, last block (7)

where NumB denotes the number of blocks and LenB denotes the length of
each block. Considering that there are various module configurations avail-
able for QR codes, which may influence the effects of the encoder-decoder
network, we conducted tests with various mapping relations between the
length of the text and the module configurations of QR codes. Table 1
shows the results. We use these mapping relations as criteria instead of
performing dynamic calculations, which reduces the search time. The pa-
rameter η can be specified in accordance with the user’s preference. A
higher η corresponds to more text in each QR code. We set this parameter
to 800 by default.

Algorithm 1 Embedding region proposal algorithm.
Input: V : the visual importance map; Text: the user input text; η: the

acceptable maximal number of characters in a single QR code;
Output: Ro set = {Ro1 ,Ro2 , ...,Rok}: a set of optimal embedding regions;

1: (W,H) = size(V),
2: Calculate NumB and LenB based on Equation 7
3: Ro set = {}, cnt = 0
4: kernel size = map(LenB) based on Table 1
5: Fullset ← Apply average pooling on V
6: sort(Fullset) in increasing order
7: for c region in Fullset do
8: for s region in Ro set do
9: if Intersection(c region,s region)> 0 then

10: con f lict = true
11: end if
12: end for
13: if con f lict = f alse and cnt <= NumB then
14: Ro set .append(c region), cnt = cnt +1
15: end if
16: end for
17: return Ro set

After determining the resolution of each QR code, we attempt to localize
the optimal regions of the carrier chart image in which to embed these QR

codes. A straightforward solution is to randomly select several regions,
but this may create discontinuities near the boundaries between modified
and unmodified regions that will look disharmonious. Another brute-force
solution is to list all possible regions and evaluate the effects of the encoder-
decoder network on each one. However, this may incur a substantial time
cost due to the large search space. Instead, inspired by region proposal
techniques from the field of object detection (e.g., selective search [18] and
RPN [43]), we generate bounding boxes based on the visual importance
map instead of the original chart image.

(a) Original chart (b) Encoded chart (c) Residual ×10

Fig. 8. Comparison of image quality before and after encoding.

The corresponding problem can be formulated as follows. Given a chart
image with a resolution of H ×W and a text with a character length of
LenT , we wish to find the NumB optimal regions with the smallest values
in the visual importance map. The size of each region box depends on
the mapping relations shown in Table 1. We generate NumB QR code
images containing the NumB blocks of text to be embedded. Given the
visual importance map Vp and the size of each region box, we use average
pooling to calculate a value for each region box:

Rv =
1

Nb

Nb

∑
p=1

Vp (8)

where Nb is the kernel size of the filter, which we regard as the size of the
region box. Then, we sort the region boxes in increasing order of their values
to obtain the list of candidate regions. We preserve the top left region box
[(0,0),(xrd ,yrd)] for embedding the position information of the other NumB
region boxes. A QR code containing the corresponding position information
is also generated. To avoid overlap of the region proposal boxes, we adopt
nonmaximum suppression (NMS) [35] based on their intersection values.
Fig. 7 shows the key steps of the embedding region proposal algorithm.
The detailed region proposal algorithm is presented in Algorithm 1. After
determining the optimal regions, we crop the corresponding NumB + 1
patches of the input chart image and feed them into the encoder network
with the NumB + 1 QR codes. In the decoding stage, we first extract
the top left QR code with the position information from the coded chart
image. Then, we locate other corresponding image patches and send them
to the decoder network to retrieve the complete information. We utilize the
position QR code instead of generating the visual importance map, which
is more efficient and accurate.

5 APPLICATIONS

VisCode can be used for a number of applications, such as embedding
metadata or source code in visualization design and visualization retargeting.

Experiments related to the envisioned applications were implemented on
a PC with an Intel Core i7 CPU, an NVIDIA GeForce 2080 Ti GPU, and
32 GB of memory. The visualization images were generated using D3 [10]
and Echarts [30]. The deep learning framework was implemented based on
Pytorch [36].

5.1 Metadata Embedding of Visualization Design
Information visualization technology uses computer graphics and image
processing techniques to convert data into graphics or images, allowing
users to observe and understand data patterns more intuitively. Related to
the processes of visualization design, display, and dissemination, there is
usually considerable information that needs to be stored, such as the name
of the designer, the design institution, the design time, the URL of the
visualization web page, and historical revision information. Such related
information for a visualization image is called metadata [19].

Url: http://test.org
Designer: Test
Institution: Test
v0.1: Initial version (Feb 02, 2020)
v0.6: Data updated (Mar 01, 2020)

v1.0: Release (Mar 14, 2020)

Fig. 9. Application interface for embedding information in a visualization
image.

VisCode provides strong support for information steganography in vi-
sualization design. First, our information encoding method is implicit and
does not affect the original visual design. Sect. 6 will demonstrate the
efficiency of our encoding method. Second, the proposed approach has
a fast encoding speed and a high decoding success rate. Therefore, it is
possible to effectively encode and decode the author information of visual
works, the source website, and other such information.

Fig. 9 shows the application interface for embedding information in a
visualization image. The input to the VisCode system consists of a visual-
ization image and the corresponding metadata. These metadata may include
website links, author names, institutions, and revision logs. The metadata
are hidden in the visualization image. Obtaining the metadata through the
VisCode decoding process is simple. Using this application, the designer of
a visual chart can hide common text information in the chart. On the one
hand, the design work is implicitly protected, and on the other hand, there
is no need to maintain additional modification log files corresponding to the
image. The ability to hide URL links in a chart also provides a convenient
way to allow users to view web-based or interactive visualizations. As
shown in Fig. 9, after the author hides the URL information in the image,
a user who has obtained the image can use the decoding module of Vis-
Code to obtain the URL and access the real-time interactive visualization
corresponding to the static image.

5.2 Source Code Embedding in a Visualization
Due to the limitations of network connections and Web servers, the pre-
sentation of dynamic web pages is not as flexible as that of static images.
Therefore, the display of static images is a very important means of shar-
ing information visualizations. However, static image display has many
shortcomings compared with web-based visualization applications. First, a
mature information visualization toolbox usually provides multiple interac-
tion modes to help users further explore the contents of data, such as time
period selection, data area selection, map level selection in map visualiza-
tions, and clicking and dragging operations. Fig. 10 presents several cases
of source code embedding in visualizations. The interactive information
label display shown in Fig. 10(a) is a frequently used function for informa-
tion visualization tasks. Second, since static images are mostly stored in
bitmap format, when the resolution of an image is not high, it cannot clearly
present information, as shown in Fig. 10(b). Third, using the 3D form is
a convenient way for the user to observe the patterns in different views.
This is not possible with a static visualization image as shown in Fig. 10(c).
Fourth, in a visualization involving temporal data, animation is commonly
used to visualize data in different periods represented by time steps, as
shown in Fig. 10(d). Hans Rosling’s dynamic visualization of population
and income throughout the world is a representative example [31].

(a) Interaction (b) Low resolution (c) 3D

(d) Animation (three frames)

Fig. 10. Three application scenarios involving the embedding of source code
in visualizations.

To extend the usage of VisCode, we present an application scenario that
provides users with a robust source code embedding function. In this source
code embedding scenario, we encode the source code data into a static
visualization image. Because the VisCode framework supports very low
loss of encoding quality and the encoding of large datasets, it can well
support the encoding of source code in information visualizations. For the
implementation of this application scenario, we first integrated common
information visualization frameworks (such as D3 [10] and Echarts [30])
into the application and then built a functionality for encoding personalized
visualization code into a specified image. When a user inputs an encoded
image, the system decodes the source code from the image and dynamically
generates and displays the visualization file, usually in the form of a web
page.

Fig. 11. A pipeline for collaboration between an artist and a developer using
the VisCode system.

In addition, source code embedding through VisCode can facilitate col-
laboration between artists and developers working on visualization projects.
In the production processes of large enterprises, artists usually use existing
visualization design tools to create visualizations based on aesthetic con-
siderations and then provide the renderings and source code generated by
those design tools to developers. Because the interactions between these
two roles are frequent and the visual design may undergo many revisions,
it can be easy to confuse the design images and codes from different ver-
sions. The need to maintain or reconstruct the correspondence relationship
between code files and images will increase the difficulty of file sharing.
As an alternative approach, VisCode can effectively convert an image and
its corresponding source code for a design into a single static image, thus
reducing the occurrence of low-level errors. Fig. 11 shows a pipeline for
collaboration between an artist and a developer using the VisCode system.
The artist can encode the source code into a static visualization image,
and the developer can decode the source code and use it in a visualization
application.

5.3 Visualization Retargeting
In addition to source code embedding, another application of VisCode is to
retarget a visualization. With the development of big data and deep learning
technologies, visualization retargeting based on pattern recognition has
gained the attention of researchers in recent years, as in the work of Poco et
al. [40]. Visualization retargeting is very useful for the creation of visual-
izations. On the one hand, it reduces the designer’s workload. On the other

(a) Input (b) Ouput 1 (c) Ouput 2 (d) Ouput 3 (e) Ouput 4

Fig. 12. Retargeting of the form of representation of information. The input
visualization can be converted to other visualization forms.

hand, it broadens the artist’s creative space. For some common chart types,
existing research has yielded methods of extracting data from a visualiza-
tion image and retargeting the visualization. For example, Poco et al. [40]
presented an approach for identifying values, legends, and coordinate axes
from a bar chart. Similar work has also been applied for information ex-
traction and retargeting based on color density maps. However, for many
types of visualizations, such as network diagrams, such recognition is still
difficult. Visualization retargeting via pattern recognition is not feasible
for some visualizations if the visualization process is not irreversible. For
example, even if the regions of a density map can be accurately identified,
the original scattered data constituting the density map cannot be recovered.

However, if VisCode is used to encode the original data into a static
image, then for a visualization that is saved in a certain format, such as
JSON, high-quality visualization retargeting can be achieved without pattern
recognition. Our implementation includes representation retargeting and
theme retargeting. First, we encode the original data of the visualization and
the visualization type into a static visualization image in JSON format. After
decoding, the data are displayed in a visualization of the specified type. For
users, the input is an encoded static image, and the output is a visual effect
of different styles, as shown in Fig. 12. We define this form of retargeting as
representation retargeting. Second, we can implement different color themes
for users to choose based on an existing representation. This capability
of color theme switching is called theme retargeting. This application of
VisCode can provide rich visual styles and color themes. It can also be used
to enable deformations for the visualization of complex network diagrams
from which information is difficult to extract, as shown in Fig. 1(a). From
an encoded color density map, the original scattered data can be extracted
through the decoding function of VisCode. Based on these scattered data
and the kernel density algorithm [46], a new density map with a personalized
bandwidth can be generated. Fig. 13 presents an example of the retargeting
of a visualization of a color density map. Fig. 13(a) shows the input static
image. Fig. 13(b) shows the extracted scattered data, and Fig. 13(c-d) show
two personalized color density maps.

(a) Encoded image (b) Decoded scatter points

(c) Retargeting result 1 (d) Retargeting result 2

Fig. 13. Retargeting the visualization of a color density map. Scatter points
are extracted from the input image and new colorful density maps are gener-
ated through the kernel density estimation.

6 EVALUATION

We evaluate our VisCode model from three aspects: steganography indices,
the evaluation of encoded image quality with the different number of mes-
sage bits; steganography defense, the evaluation of decoding accuracy in
various corruption scenarios through digital transmission; and time per-
formance, the evaluation of embedding information and recovery time of
different settings.

6.1 Steganography Indices
We used three metrics to evaluate the performance of our VisCode model:
the peak signal-to-noise ratio (PSNR) [2], the SSIM [50], and the learned
perceptual image patch similarity (LPIPS) [59]. The PSNR [2] is a widely
used metric for evaluating image distortion. We computed the PSNR by
comparing the coded image Ic

′
and the original chart image Ic, each consist-

ing of N pixels:

PSNR = 20 · (log10Pmax− log10
1
N

N

∑
p=1

(Icp − Icp

′
)2) (9)

where Pmax is the maximum possible difference between two pixel values,
which we set to 1.0 in our experiment since the RGB values of our images
are ranged from 0 to 1.

Because the PSNR measures the distance between each pair of pixels
independently, we also considered the SSIM to measure the structural
similarity between two images. The SSIM is defined as shown in Equation 4.
It is a patch-level perceptual metric. However, whereas both the PSNR
and SSIM are low-level metrics, Zhang et al. [59] have demonstrated that
perceptual similarity is influenced by visual representations instead of being
a special function. Accordingly, the LPIPS, which relies on deep features,
can better reflect human judgments.

We construct a test dataset of 500 chart images with various resolu-
tions and types, as mentioned in Sect. 4.1. We compare our method with
StegaStamp [47] and SteganoGAN [58]. However, there are some limi-
tations to these two methods. StegaStamp [47] can embed only 100 bits
data. SteganoGAN [58] can embed small-scale data, but it will cost huge
time when the number of bits increases to a threshold. Therefore, the two
methods StegaStamp and SteganoGAN are not suitable for embedding
large-scale information in data visualizations. For a fair comparison, we
resize the chart images to the same resolution, and embed the same numbers
of data bits into the test dataset. Higher PSNR, higher SSIM, and lower
LPIPS are better. As shown in Table 3, the comparison result demonstrates
that VisCode can embed information in various types of chart images with
better visual quality. Besides, we design a user study to evaluate the visual
effects of the results by human judgments. We select 15 images from the
test dataset as the input to generate steganographic results by 3 methods
and recruit 30 users to choose the best one. VisCode achieves a mean
proportion of being selected of 83.6%, while SteganoGAN achieves 15.1%
and StegaStamp achieves 1.3%. Our method is rated higher than others.

Our VisCode system is designed to store an extensive amount of infor-
mation. Embedding large data is challenging due to the tradeoff between
the visual quality of encoded images and the amount of data. Therefore,
we evaluate the quality of encoded images with different input text lengths.
The resolutions of the test chart images are set to 1600× 1600. Fig. 14
reports the results of our steganography index evaluation, where X-axis
represents the number of bits of input text, and Y-axis shows the average
values of associated image quality metrics. Our method achieves 29.18
PSNR, 0.9873 SSIM, and 0.0042 LPIPS on average for embedding 204,800
bits of information. It demonstrates that VisCode can encode large-scale
data while preserving the perceptual quality of the visualizations.

Table 3. Evaluation results of steganography indices

Method Size
100 bits 3200 bits

P ↑ S ↑ L ↓ P ↑ S ↑ L ↓
StegaStamp

400×400
34.09 0.9312 0.0413 - - -

SteganoGAN 35.26 0.9386 0.0247 35.19 0.9380 0.0249

VisCode
40.63 0.9959 0.0007 39.19 0.9930 0.0008

800×800 42.08 0.9990 0.0003 41.70 0.9987 0.0004

bi
ts80
0

3,
20
0

bi
ts

12
,8
00

bi
ts

51
,2
00

bi
ts

20
4,
80
0

bi
ts

PSNR

0

10

20

30

40

50

PSNR

(a) PSNR

bi
ts80
0

3,
20
0

bi
ts

12
,8
00

bi
ts

51
,2
00

bi
ts

20
4,
80
0

bi
ts

SSIM

0.9

0.92

0.94

0.96

0.98

1

SSIM

(b) SSIM

bi
ts80
0

3,
20
0

bi
ts

12
,8
00

bi
ts

51
,2
00

bi
ts

20
4,
80
0

bi
ts

0

LPIPS
0.005

0.004

0.003

0.002

0.001

LPIPS

(c) LPIPS

Fig. 14. Steganography index evaluation demonstrates that VisCode can
encode large-scale data while preserving the perceptual quality of the visual-
izations.

Table 4. Evaluation results of steganography defense.

Method Watermark Brightness Rotation JPEG

LSB [33] 0.02% 0% 0% 0%

DeepSteg [5] 3.45% 32.75% 100% 9.8%

VisCode (Ours) 55.29% 32.79% 100% 10.2%

6.2 Steganography Defense

If we use normal digital transmission without large deformations of the
coded images, the decoding text recovery accuracy achieves over 90%.
When users share encoded chart images through digital transmission, cor-
ruption, or attack may occur. Therefore, we analyze four typical scenarios:
adding watermark, adjusting brightness, applying rotation and applying
JPEG compression. For each image in the test dataset, we first generate
the encoded image with text of 12,000 bits and then apply the following
operations: (1) Adding a visible watermark in the same position of the
encoded image. (2) Adjusting ±10% brightness of the image. (3) Rotating
the image 180◦ clockwise. (4) Applying JPEG compression to the image
with quality factor Q = 90.

We use Text Recovery Accuracy (TRA) to assess the performance of
our VisCode model in the decoding stage. TRA is defined as the pro-
portion of recovered characters in all input characters. Since it is diffi-
cult to embed large-scale data in chart images using StegaStamp [47] and
SteganoGAN [58], we compare VisCode with other two methods LSB [33]
and DeepSteg [5]. In this part, we maintain the diverse resolutions of the
testing dataset from 300×300 to 3000×3000, as mentioned in Sect. 4.1.

Table 4 shows the comparison result in steganography defense evalu-
ation. LSB is a traditional steganography method using fixed principles,
unable to the defense any perturbations. We find that the performance of
VisCode in adjusting brightness, applying rotation and JPEG compression
is close to DeepSteg [5], since the three manipulations apply changes on all
pixels. Watermarks apply local changes to the image, which may destroy
the important features of the image. In this case, VisCode outperforms
DeepSteg [5] by embedding information in insensitive regions.

Encoding

0s

1s

2s

3s

4s

5s

6s

20
0

bi
ts 80

0

bi
ts

3,
20
0

bi
ts

12
,8
00

bi
ts

51
,2
00

bi
ts

Scale-200

Scale-400

Scale-800

Scale-1600

(a) Encoding

Decoding

0s

0.5s

1s

1.5s

2s

2.5s

3s

20
0

bi
ts 80

0

bi
ts

3,
20
0

bi
ts

12
,8
00

bi
ts

51
,2
00

bi
ts

Scale-200

Scale-400

Scale-800

Scale-1600

(b) Decoding

Fig. 15. Time performance comparison of encoding and decoding.

(a) Encoding bits = 19,200 (b) Encoding bits = 76,800

(c) Decoding bits =

3200

(d) Decoding bits

= 12,800

Fig. 16. The sample steganographic images generated by VisCode and
decoded results with various bits of data. The input chart image is with a
resolution of 420×670. There are fewer visible artifacts in Fig. 16a than that
in Fig. 16b. Moreover, Fig. 16c is decoded correctly, while embedding too
much information may cause a high decoding error rate, as shown in Fig. 16d.

6.3 Time Performance
The encoder-decoder network is integrated into VisCode with several other
processes for interactive applications. We evaluate time performance for
VisCode system of different scales of input chart images and text in Fig. 15.
X-axis represents the number of bits of input text, and Y-axis shows the
average time (in seconds) taken by the complete encoding stage (Fig. 15a)
and decoding stage(Fig. 15b). Lines of different colors represent different
resolutions of the input chart images, ranging from 200× 200 to 1600×
1600. The environment configurations are introduced in Sect. 5.

In the encoding stage, we observe that the time performance is relatively
stable for encoding different lengths of information to images with the same
resolution. The complete encoding stage includes predicting the visual
importance map of the input chart image, localizing the optimal regions,
generating QR codes, sending corresponding image pairs to the encoder
network, and obtaining the encoded chart image. When the resolution of
images is constant, the increased time is mainly spent on generating QR
codes, while the runtime of the encoder network is very fast. On the other
hand, the leading cause of different time performance between images with
diverse resolutions is the calculation of the visual importance map and the
embedding region proposals. In the decoding stage, the time cost of the
different resolution of images is similar owing to the fast decoder network,
while larger message needs more time to convert QR codes to text with the
error-correction scheme.

7 CONCLUSION

We have proposed an approach for encoding information into a static visu-
alization image. Our applications implemented with VisCode are designed
to support metadata embedding, source code embedding, and visualization
retargeting. We have designed an encoder-decoder network to effectively
encode large amounts of information into visualization images such that the
original data can be decoded with high accuracy. The presented applications
and evaluations demonstrate that VisCode can offer intuitive and effective
information embedding for various types of visualizations.

The current version of VisCode has certain limitations in addressing large
deformations of the coded images. In addition, for a fixed visualization
image size, there is an upper limit on the amount of information that can
be embedded, which reduces the effectiveness of VisCode. If we embed
too much information in a chart image, which corresponds to more text
in each QR code and lower error correction capability, it may cause a
high decoding error rate. With the same image size and encoded data bits,
images with more complex texture and rich color content are easier to
decode successfully.

In the future, we plan to propose a more flexible framework to ensure
a high decoding success rate while adapting to visualization image defor-
mation. Camera capturing and light-aware steganography, as shown in the
work of Wengrowski and Dana [53], is a potential research direction that
can extend the application domain of VisCode. We also plan to collaborate
with designers and developers to obtain feedback in an actual design and
development environment to improve the user experience of VisCode.

ACKNOWLEDGMENTS

The authors wish to acknowledge the support from NSFC under Grants (No.
61802128, 61672237, 61532002).

REFERENCES

[1] Information technology — automatic identification and data capture techniques
— qr code bar code symbology specification. ISO/IEC 18004:2015, 2015.

[2] A. Almohammad and G. Ghinea. Stego image quality and the reliability of
psnr. In 2010 2nd International Conference on Image Processing Theory, Tools
and Applications, pp. 215–220. IEEE, 2010.

[3] A. Almohammad, R. M. Hierons, and G. Ghinea. High capacity stegano-
graphic method based upon jpeg. In 2008 Third International Conference on
Availability, Reliability and Security, pp. 544–549. IEEE, 2008.

[4] H. Alok and H. Jian. Embedding meta information into visualizations. IEEE
Transactions on Visualization and Computer Graphics, pp. 1–15, 2019.

[5] S. Baluja. Hiding images in plain sight: Deep steganography. In Advances in
Neural Information Processing Systems, pp. 2069–2079, 2017.

[6] D. Boneh. Finding smooth integers in short intervals using crt decoding.
Journal of Computer and System Sciences, 64(4):768–784, 2002.

[7] M. A. Borkin, Z. Bylinskii, N. W. Kim, C. M. Bainbridge, C. S. Yeh, D. Borkin,
H. Pfister, and A. Oliva. Beyond memorability: Visualization recognition and
recall. IEEE transactions on visualization and computer graphics, 22(1):519–
528, 2015.

[8] M. A. Borkin, A. A. Vo, Z. Bylinskii, P. Isola, S. Sunkavalli, A. Oliva, and
H. Pfister. What makes a visualization memorable? IEEE Transactions on
Visualization and Computer Graphics, 19(12):2306–2315, 2013.

[9] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting binary
group codes. Information and control, 3(1):68–79, 1960.

[10] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
transactions on visualization and computer graphics, 17(12):2301–2309, 2011.

[11] Z. Bylinskii, N. W. Kim, P. O’Donovan, S. Alsheikh, S. Madan, H. Pfister,
F. Durand, B. Russell, and A. Hertzmann. Learning visual importance for
graphic designs and data visualizations. In Proceedings of the 30th Annual
ACM symposium on user interface software and technology, pp. 57–69, 2017.

[12] J. Choi, S. Jung, D. G. Park, J. Choo, and N. Elmqvist. Visualizing for the
non-visual: Enabling the visually impaired to use visualization. In Computer
Graphics Forum, vol. 38, pp. 249–260. Wiley Online Library, 2019.

[13] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker. Digital watermarking
and steganography. Morgan kaufmann, 2007.

[14] W. Dai, M. Wang, Z. Niu, and J. Zhang. Chart decoder: Generating textual
and numeric information from chart images automatically. Journal of Visual
Languages & Computing, 48:101–109, 2018.

[15] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

[16] H. Enamul and M. Agrawala. Searching the visual style and structure of d3
visualizations. IEEE Transactions on Visualization and Computer Graphics,
26(1):1236–1245, 2020.

[17] H. M. Ghadirli, A. Nodehi, and R. Enayatifar. An overview of encryption
algorithms in color images. Signal Processing, 2019.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 580–587,
2014.

[19] J. Greenberg. Understanding metadata and metadata schemes. Cataloging
classification quarterly, 40(3-4):17–36, 2005.

[20] D. Haehn, J. Tompkin, and H. Pfister. Evaluating ‘graphical perception’with
cnns. IEEE transactions on visualization and computer graphics, 25(1):641–
650, 2018.

[21] T. Hao, R. Zhou, and G. Xing. Cobra: color barcode streaming for smartphone
systems. In Proceedings of the 10th international conference on Mobile systems,
applications, and services, pp. 85–98, 2012.

[22] J. Hayes and G. Danezis. Generating steganographic images via adversarial
training. In Advances in Neural Information Processing Systems, pp. 1954–
1963, 2017.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[24] V. Holub and J. Fridrich. Designing steganographic distortion using directional
filters. In 2012 IEEE International workshop on information forensics and
security (WIFS), pp. 234–239. IEEE, 2012.

[25] S. Husien and H. Badi. Artificial neural network for steganography. Neural
Computing and Applications, 26(1):111–116, 2015.

[26] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

[27] K. Jo, M. Gupta, and S. K. Nayar. Disco: Display-camera communication using
rolling shutter sensors. ACM Transactions on Graphics (TOG), 35(5):1–13,

2016.
[28] E. Kawaguchi and R. O. Eason. Principles and applications of bpcs steganog-

raphy. In Multimedia Systems and Applications, vol. 3528, pp. 464–473.
International Society for Optics and Photonics, 1999.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[30] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and W. Chen. Echarts:
A declarative framework for rapid construction of web-based visualization.
Visual Informatics, 2(2):136–146, 2018.

[31] A. Maxmen. Three minutes with hans rosling will change your mind about the
world. Nature News, 540(7633):330, 2016.

[32] G. G. Méndez, M. A. Nacenta, and S. Vandenheste. ivolver: Interactive visual
language for visualization extraction and reconstruction. In Proceedings of
the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4073–
4085, 2016.

[33] J. Mielikainen. Lsb matching revisited. IEEE signal processing letters,
13(5):285–287, 2006.

[34] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pp. 807–814, 2010.

[35] A. Neubeck and L. Van Gool. Efficient non-maximum suppression. In 18th
International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–
855. IEEE, 2006.

[36] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Process-
ing Systems, pp. 8024–8035, 2019.

[37] T. Pevnỳ, T. Filler, and P. Bas. Using high-dimensional image models to
perform highly undetectable steganography. In International Workshop on
Information Hiding, pp. 161–177. Springer, 2010.

[38] L. Pibre, J. Pasquet, D. Ienco, and M. Chaumont. Deep learning is a good
steganalysis tool when embedding key is reused for different images, even if
there is a cover sourcemismatch. Electronic Imaging, 2016(8):1–11, 2016.

[39] J. Poco and J. Heer. Reverse-engineering visualizations: Recovering visual
encodings from chart images. In Computer Graphics Forum, vol. 36, pp.
353–363. Wiley Online Library, 2017.

[40] J. Poco, A. Mayhua, and J. Heer. Extracting and retargeting color mappings
from bitmap images of visualizations. IEEE transactions on visualization and
computer graphics, 24(1):637–646, 2017.

[41] X. Qin, Z. Zhang, C. Huang, C. Gao, M. Dehghan, and M. Jagersand. Basnet:
Boundary-aware salient object detection. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 7479–7489, 2019.

[42] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal
of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[43] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information
processing systems, pp. 91–99, 2015.

[44] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241. Springer, 2015.

[45] C. E. Shannon. A mathematical theory of communication. Bell system technical
journal, 27(3):379–423, 1948.

[46] B. W. Silverman. Density estimation for statistics and data analysis, vol. 26.
CRC press, 1986.

[47] M. Tancik, B. Mildenhall, and R. Ng. Stegastamp: Invisible hyperlinks in phys-
ical photographs. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2117–2126, 2020.

[48] W. Tang, S. Tan, B. Li, and J. Huang. Automatic steganographic distortion
learning using a generative adversarial network. IEEE Signal Processing
Letters, 24(10):1547–1551, 2017.

[49] E. R. Tufte. The visual display of quantitative information, vol. 2. 2001.
[50] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions on
image processing, 13(4):600–612, 2004.

[51] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Multiscale structural similarity
for image quality assessment. In The Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402. Ieee, 2003.

[52] D. WAVE. Qr code. https://www.qrcode.com.
[53] E. Wengrowski and K. Dana. Light field messaging with deep photographic

steganography. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1515–1524, 2019.

[54] L. Wilkinson. The grammar of graphics. In Handbook of Computational
Statistics, pp. 375–414. Springer, 2012.

https://www.qrcode.com

[55] P. Wu, Y. Yang, and X. Li. Stegnet: Mega image steganography capacity with
deep convolutional network. Future Internet, 10(6):54, 2018.

[56] C. Xiao, C. Zhang, and C. Zheng. Fontcode: Embedding information in text
documents using glyph perturbation. ACM Transactions on Graphics (TOG),
37(2):1–16, 2018.

[57] Y. Yang, R. Pintus, H. Rushmeier, and I. Ivrissimtzis. A 3d steganalytic
algorithm and steganalysis-resistant watermarking. IEEE transactions on
visualization and computer graphics, 23(2):1002–1013, 2016.

[58] K. A. Zhang, A. Cuesta-Infante, L. Xu, and K. Veeramachaneni. Steganogan:
high capacity image steganography with gans. arXiv preprint arXiv:1901.03892,
2019.

[59] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595,
2018.

[60] J. Zhu, R. Kaplan, J. Johnson, and L. Fei-Fei. Hidden: Hiding data with deep
networks. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 657–672, 2018.

	Introduction
	Related Work
	Information Steganography
	Image Steganography
	Retargeting of Information Visualization

	Overview
	Definition

	Methods
	Dataset
	Visual Importance Map
	Encoder and Decoder
	Large-Scale Data Embedding

	Applications
	Metadata Embedding of Visualization Design
	Source Code Embedding in a Visualization
	Visualization Retargeting

	Evaluation
	Steganography Indices
	Steganography Defense
	Time Performance

	Conclusion

