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Visual graphics and image-based content have become the pervasive modes of interaction with the digi- 

tal information flow. With the immense proliferation of display systems and devices, visual content repre- 

sentation has become increasingly challenging. Classical static image resizing algorithms are not directly

suitable for the current dynamic information visualization of streaming data flows and processes because

most of the visual content often consists of superimposed, multi-layered, multi-scale structure. In this

paper, we propose a new adaptive method for content-aware resizing of visual information flow. Scaling

is performed by deforming a hierarchical triangle mesh that matches the visual saliency map (VSM) of

the streaming data. The VSM is generated automatically based on a series of predefined rules operating

on a triangular mesh representation of visual features. We present a linear energy function to minimize

distortions of the triangular deformations to perceptually preserve informative content. Through multi- 

ple experiments on real datasets, we show that the method has both high performance as well as high

robustness in the presence of large differences in the visual aspect ratios between target displays.

1. Introduction

Content-aware resizing is an adaptive technique in image pro- 

cessing that filters out less important content and retains more im- 

portant ones. This technique has also become a useful tool for in- 

formation visualization because the diversity of displays for hard- 

ware is increasing. In addition, virtual displays of arbitrary size or 

aspect ratio require content-aware resizing techniques. Although 

artists, web designers, and programmers can design several avail- 

able layouts for different scenarios, the task is time-consuming and 

costly. 

The main objective of this work is to perceptively adjust the 

data output to any size or aspect ratio of a target display in the 

context of multi-layered information visualization applications. The 

basic resizing techniques such as cropping and linear scaling often 

result in information loss and visual distortions. Cropping ( Fig. 1 b) 

is the simplest operation for visualization resizing. Cropping can 

be used to adapt to different types of displays. However, cropping 

often removes important content. Linear scaling ( Fig. 1 c) is an- 

other approach. However, distortions often appear when more im- 

portant content regions have the same scaling rate as less impor- 
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tant regions. Missing content and added distortions in visualiza- 

tions quickly lead to loss of attention, or worse, the complete mis- 

interpretation of the information presented. Hence, it is paramount 

to adopt a robust approach that not only resizes the content ap- 

propriately but also retains the important content in information 

visualization. 

Existing approaches for content-aware resizing mainly focus on 

natural images such as portraits, landscapes, and buildings. On the 

other hand, in information visualization, images normally consist 

of abstract mathematical representations such as vectors, points, 

lines, icons and geometrical shapes. The important content often 

represents the main subject in visual content. Fig. 1 (e) shows an 

example of content-aware resizing of visual information produced 

by our method. 

Most of the existing image resizing approaches are not entirely 

suitable for information visualization. Grid-based methods [1] , as 

shown in Fig. 1 (d), have been used for resizing such images as 

geometric distortions and are easily identified. Pixel-based seam 

carving, Avidan et al. [2] , is normally used for image resizing. This 

technique cannot be easily extended to account for layout adjust- 

ments of geographical scatterplots and social network graphs. In 

addition, the criterion for significant regions in visualization is dif- 

ferent from natural images because their color schemes are differ- 

ent. For example, a blue sky in a natural scene is normally clas- 

sified as background. Therefore, it would often be considered less 
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Fig. 1. Results of four different strategies for resizing of visualization output.

important than a person in the foreground. Unlike natural images, 

a blue region rendered by a visualization system may be regarded 

as an important region. 

Information visualization often consists of multiple information 

layers. For example, a geographical application would normally 

contain several layers such as water, continents, and various lo- 

cation markers. If we ignore major regions such as continents in 

resizing, then the results will suffer from distortions. Multi-layered 

based resizing is rarely discussed in the previous work either on 

image resizing or on information visualization resizing. The resiz- 

ing framework of Wu et al. [3] assumed the information visualiza- 

tion layer is single such as scatter-plot, network, and word cloud. 

However, often there are many abstract layers in information visu- 

alization designs such as a scatter-plot on a map and graph with 

group shapes. Therefore, it is necessary to revisit the multi-layer 

approaches to detect and preserve the different layers in informa- 

tion visualization. When the resizing content is complex and the 

canvas become larger, the time performance is becoming more im- 

portant. Prior work such as Wu et al. [3] requires adjustment to 

fast resize the information visualization. 

Hence, based on the resizing pipeline of Wu et al. [3] , we 

present a different visualization resizing approach in three aspects. 

First, we define a visualization-related saliency map. Second, we 

consider the classes of information to be segregated into multi- 

layers for visualization. Third, the controlling mesh for resizing in 

our approach is adaptive so that users can emphasize the content 

of the visualization with fewer distortions in a shorter period of 

time. The contributions of our work are: 

1. an abstract multi-layer model for the resizing problem of in- 

formation visualization. Our model can be used to resize the

output from a visualization system to automatically match the

native aspect ratio of any external target display;

2. a set of criteria called the visual saliency map (or VSM) to

describe the features of information visualizations in different

saliency layers;

3. a triangle mesh-based energy optimization method to achieve

better visual distribution of information features after resizing.

We present the results of our experiments on different genres

of multi-layered visualizations to demonstrate the performance

of our approach.

2. Related work

In the following subsections, we review the related methods on 

content-aware resizing, saliency mapping, and adaptive meshing. 

2.1. Content-aware resizing 

Many researchers have been working on the content-aware re- 

sizing problem recently [4] . The problem is also known as fo- 

cus+context resizing or saliency-aware resizing . Generally, content- 

aware resizing methods can be classified into (a) pixel-based, and 

(b) mesh-based. Pixel-based methods are discrete. Seam carving

[2] is the first proposed pixel-based method that is related to

content-aware resizing of images. Rubinstein and his colleagues

improved seam carving via forwarding energy [5] . Seam carving
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was also improved by Xu et al. [6] by transforming the extracted 

image structure. Unfortunately, these methods are based on some 

form of pixel energy or intensity levels, and are not applicable to 

vector-based visualizations such as graphs and geographical maps 

(GGM). In addition, the content cannot be further enhanced when 

it is resized by seam carving. Furthermore, the iteration of seam 

carving is time-consuming and puts severe constraints on real- 

time interactive editing. Some improvements have been proposed 

by Yael et al. [7] and Wu et al. [8] with better visual results than 

the original pixel-based methods. But, these methods still lead to 

missing information in information visualizations. 

On the other hand, mesh-based methods for resizing provide a 

degree of continuity for the underlying regions. Gal et al. [9] pre- 

sented a novel resizing method by using a manual feature mask 

and an underlying grid. Wang et al. [1] described an optimized re- 

sizing approach that overcomes the edge distortion problem which 

was not considered before. 

Currently, the focus is increasingly put on content-aware resiz- 

ing for information visualization. Examples can be found in tree- 

maps [10] and word clouds [11] . These methods provided effective 

algorithms for special information visualizations. Wu et al. [3] uti- 

lized a significance map and quad-based deformation to put for- 

ward a general resizing framework for visualization. However, for 

complex elements in multiple layers, such as geographical infor- 

mation and large graphs, the existing methods are still inadequate. 

2.2. Saliency map 

Saliency maps play a very important role in content-aware re- 

targeting for both images and visualizations because these maps 

can be treated as a form of energy of pixels, which can be used to 

build an energy function, such as shown by Avidan [2] and Wang 

[1] . Itti et al. [12] took into consideration the human visual system

and denoted the significance of points from a natural image. They

also presented an effective f eed-forward f eature-extraction method

to compute a saliency map from it. Frintrop et al. [13] extended

the work of [12] and computed saliency at the pixel level with

high performance. Wang et al. [1] used the method explained in

[12] to assign a significance threshold to quads. Wu et al. [3] com- 

bined a clutter map and a DOI map into a significance map, which

is another type of saliency map. Zhang et al. [14] used anisotropic 

diffusion equation to further improve the accuracy of saliency de- 

tection. However, in information visualizations, the methods above 

require further adaptation for saliency detection. 

Achanta et al. [15] summarized five basic requirements for 

saliency detection and proposed a simple implementation, called 

FT. FT can be easily extended to consider the multiple visual fea- 

tures in images. Goferman et al. [16] presented a novel method 

to detect the context-aware saliency map that aimed at represent- 

ing the dominant objects in an image. They argued that the con- 

text of a region should be also considered to generate a more ac- 

curate saliency map. They also demonstrated that their approach 

has potential applications in image resizing. Yan et al. [17] pro- 

posed a hierarchical saliency detector that can generate a multi- 

layer saliency map for natural images. Cellular automata with dif- 

ferent layers was used by Qin et al. [18] to detect saliency among 

similar image patches. However, in information visualizations, the 

methods of [16–18] require further adaptation for saliency detec- 

tion. 

2.3. Adaptive mesh 

Adaptive meshes are usually used in computer graphics, partic- 

ularly, in physically-based simulations. Adaptive meshing can gen- 

erate various densities of meshes for different scales. For example, 

Busaryev et al. [19] used the adaptive meshes to simulate fracture- 

aware re-meshing to provide more details in fracture regions. For 

image retargeting, Kaufmann and his colleagues, [20] , used the Fi- 

nite Element Method to reduce the degrees of freedom in deforma- 

tion, which stands out in real-time image resizing. For visualization 

resizing, Wu et al. [3] proposed the quad-tree method that can 

generate adaptive quads to cover the important regions as more 

as possible. The method proposed by Wu et al. [3] works well for 

single-layer information visualization, but it would require modifi- 

cation to deal with multi-layer resizing of information visualization 

and improve the performance. 

3. Overview of our proposed method

We define information visualization resizing as a saliency detec- 

tion and geometric deformation problem. The input of our model 

is a multi-layered rendering. Multi-layers can be viewed as more 

than one representation in information visualization. In the ex- 

ample of Fig. 1 (a), the input includes a geographical map, lines 

and nodes with different radii. First, we detect the visual saliency 

through a hybrid saliency model, the VSM, that can generate dif- 

ferent saliencies for different layers in visualization. In this step, 

we further improve the accuracy of the visual saliency detector by 

considering the lightness in color information. Second, we create 

an adaptive mesh that consists of controlling triangles with dif- 

ferent levels of detail over the input visualization. The input data, 

such as nodes, were bound to vertices in the mesh according to 

their positions. Third, we formulate the controlling triangles for 

the resizing problem as an optimization problem according to the 

VSM. Finally, we can resize the input visualization by solving a 

large sparse linear system. After the mesh deformation, the im- 

portant features of the input can be well preserved as shown in 

Fig. 1 (e). 

4. The visual saliency map (VSM)

The proposed saliency-based method, called the visual saliency 

map (VSM), adaptively indicates the significant regions in a infor- 

mation visualization. For the content-aware resizing, the deforma- 

tion of each region is dependent on its corresponding saliency. Al- 

though the saliency of each region can be assigned by users man- 

ually, it is more effective to automatically detect the important re- 

gions. 

The saliency concept for visualization is different than the one 

used in natural images in three aspects. First, the content in data 

visualizations is sharper than that in natural images, hence it is un- 

necessary to pre-process the pixels, such as smoothing or noise re- 

duction, before saliency detection. Second, the regions with differ- 

ent colors but similar shapes in visualizations may have the same 

ground-truth saliency. However, ordinary saliency detection algo- 

rithms for natural images normally define those regions with dif- 

ferent saliency. Third, the resizing approaches for natural images 

rarely take context into consideration. However, context informa- 

tion is also required to be preserved in multi-layer visualizations. 

Normally, the background map in geographical applications and 

communities of social networks can be defined as context because 

they are closely related to important regions that users are inter- 

ested in. Hence, we focus on two parts in the visual saliency map. 

One is the importance detector, which can detect the most impor- 

tant regions, and the other is the context detector, which can de- 

tect edges and the second important regions. 

Our VSM method is different from the work of Wu et al. [3] , 

who adopted a clutter map (Feature Congestion [21] ) and DOI map 

to guide the mesh deformation. The DOI map is a fine supplement 

for a cluster map because it can show the degree of interests. How- 

ever, when the features are more complex shapes such as a ge- 
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Fig. 2. Different parts of visual saliency map. (a) Original visualization image. (b) Important regions. (c) Sharp edges. (d) Enhanced edges. (e) second important regions. (f)

Final visual saliency map.

Fig. 3. Color palette from Tableau. The top palette of deep colors is normally used to represent the most important regions in visualization. On the contrary, a bottom palette

of lightish colors indicates the second important regions or backgrounds in visualization.

Fig. 4. An example of the multi-layer visualization saliency map. (a) Multi-layer visualization with lightish color. (b) The saliency map is unavailable because the light green

region is not detected. (c) Visual saliency map for solving SSDC problem.

ographical map or a filled irregular shape, the generation of DOI 

map requires adaptation. 

4.1. Importance detector 

We adopt a frequency-based method [15] to detect the most 

important region (as shown in Fig. 2 b). This method can be formu- 

lated as follows: 

G (i, j, k ) = 

1

2 πk 2 
e −(i 2 + j 2 ) / 2 k 2 (1) 

S m 

(i, j) = ‖ G (i, j, ∞ ) − G (i, j, ε) ‖ 2 (2) 

where G (i, j, ε) represents the Gaussian blurred values of pixel 

( i , j ) for image rendering following the Gaussian filter function, as 

shown in Equation (1 . The function G (i, j, ∞ ) can be approximated 

through a filter template 1 
4 [1 , 2 , 1] with k = 1.6. Because different 

features such as color and contrast should be considered in the 

importance detection, G is defined as a vector. In the method of 

[15] , Achanta et al. adopted the LAB color space with the three fea- 

tures lightness (L), one color-opponent dimension (A), and another

color-opponent dimension (B) as a feature vector. The feature of 

lightness in LAB color can represent high contrast regions, which 

are normally considered of high importance in information visual- 

ization. 

We found that using the LAB color space to maintain feature 

vectors is not enough to detect available saliency regions in in- 

formation visualization. For example, if the designers follow the 

Tableau 20 palette [22] as shown in Fig. 3 , it is difficult to detect 

the available saliency for lightish regions as shown in Fig. 4 (b). We 

define this problem as similar-shape-different-color (SSDC) prob- 

lem. We add the mid-channel feature to the feature vector so that 

we can ignore the extreme value of the color channel among light- 

ish colors. The mid-channel feature is represented via calculating 

middle value of three channels in RGB color. Finally, the feature 

vector in G can be defined as v f = [ l, a, b, m ] . The better visual con- 

trast between features can be achieved by modifying the feature 

vector as in [15] , see Fig. 4 (c). 

4.2. Context detector 

The context is normally the surrounding area of the important 

region. The context should also be considered because the distor- 

tion of context while resizing will also affect the visual results. We 

assume that the context includes two parts: edges and the second 

important regions. The Sobel and Canny Operator can be used to 

detect edges in a visual image. We select the Sobel Operator be- 

cause it is a discrete differentiation operator that achieves a higher 

performance than the Canny Operator . The edge (as shown in 

Fig. 2 c) of the visualization can be abstracted via Sobel Operator 

as follows: 

S e (i, j) = 

√ 

g x (i, j) 
2 + g y (i, j) 

2 
(3) 

where g x (i, j) is the gradient along horizontal direction and g y (i, j) 

is the gradient along vertical direction. Because the edge is narrow, 

it is difficult to be used to generate triangles. Thus, we enhance 

edges through a Dilation Operator which can be formulated as: 

S d (i, j) = max { S e (i + m, j + n ) }| (m, n ) ∈ B (4)
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Fig. 5. Examples of visual saliency map. (top) Visualization of the cost of living in different countries as described in Section 6.1.1 . (bottom) A heat-map of users’ locations

from Brightkite.com as described in Section 6.1.2 .

Fig. 6. Triangulations with different level of details where α= 20. (a) Original visualization. (b) Level = 1, S(i, j) ∈ [0 , 0 . 15) . (c) Level = 2, S(i, j) ∈ [0 . 15 , 0 . 5) . (d) Level = 3, S(i, j) ∈ 
[0 . 5 , 1 . 0]) . (e) Level = 1-3, S(i, j) ∈ [0 . 0 , 1 . 0] . 

where B is a square of radius r, (m,n) is a point in B . The radius of 

dilation operator is set to 3 in our experiments. 

For the second important region, we assume it indicates the 

second largest regions in S m 

. All of those regions contains the same 

saliency value. Our second important region detection is achieved 

through a histogram of S m 

. First, we calculate the histogram of S m 

and find the second largest peak value p sec in it. We ignore the 

first largest part because it normally indicates the background. The 

second important region can be defined as follow: 

S sec (i, j) = 

{
0 , S m 

(i, j) = 0 
√ 

p sec , S m 

(i, j) = p sec 
(5) 

where we use the sqrt operator to enhance the saliency value. 

Then, we can formulate the context detector as S c (i, j) = S d (i, j) + 

S sec (i, j) and lead to the final value of VSM as follow: 

S vsm 

(i, j) = S m 

(i, j) + S c (i, j) (6) 

S vsm 

(i, j) should be normalized to limit the value in [0 , 1] . With 

the VSM, we can adaptively indicate the saliency layers of vari- 

ous visual elements that are the preparation of our resizing model. 

Fig. 5 shows two examples of our VSM. 

5. Adaptive resizing model

In the following sections, we describe our resizing model in de- 

tail. First, we start with the adaptive meshing. We resort to trian- 

gular meshes as triangular meshes can be more readily adapted to 

high-density regions. 

5.1. Adaptive triangulation 

Here we propose an adaptive triangulation method to reduce 

the degree of factors (DOF) that are related to the performance of 

resizing. 

Based on the VSM, we vary the density of triangles for different 

important regions. First, a point set will be extracted on the basis 

of intensities in saliency map. Delaunay Triangulation [23] can be 

used to generate triangles. For two-dimensional triangulation, a set 

of key points V will construct a mesh M. M should fulfill three 

constraints. First, the edges in M do not contain any key points in 

V except for the start and the end point. Second, an edge cannot 

intersect another edge. Third, all elements in M are triangles. These 

elements form the convex hull of V . 

We utilize the VSM to create a set of key points, the V band 

that satisfies these three constraints to generate M that includes 

several triangles. The threshold is a quick method to create key 

points from a saliency map via extracting the points with high 

saliency, but a large number of key points will be extracted if there 

are many pixels with high saliency. Therefore, we construct a con- 

straint to determine the interval of triangulation sampling to limit 

the total number of points in V . We define the constant number of 

points in V through C p = 

wh 
α2 , where w and h are respectively the 

width and height of the canvas in the visualization, and α is a free 

parameter that is used to adjust C p . Different values of saliency can 

be mapped to different levels of triangulations. We use t k 0 and t k 1 
to indicate the range of saliency value for level k . The interval of 
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Fig. 7. Two triangulation strategies.

triangulation sampling for different levels k can be formulated as 

follows: 

I k = 

C p √ ∑ 

t k 0 ≤S(i, j) <t k 1 
S(i, j) 

(7) 

When the saliency of a region is between t k 0 and t k 1 , it should fol- 

low the interval of sampling I k . The interval of sampling indicates 

the count of interval pixels of each key point v k in V . Fig. 6 shows 

an example of triangulation with different level of details. In our 

resizing model, we merge three levels of triangulations into one as 

shown in Fig. 6 (e). By using VSM and Delaunay Triangulation , we 

can generate content-aware triangles as shown in Fig. 7 (b), which 

is more flexible than the homogeneous triangulation in Fig. 7 (a). 

5.2. Mesh resizing 

5.2.1. Resizing energy optimization 

We represent the topology of the mesh with M = (V , E , T ) , 

where V = [ v T 
0 
, v T 

1 
, . . . , v T n ] , (v i ∈ R 

2 ) denotes the vertices, E are the 

edges and T depicts the triangles that respectively have three ver- 

tices and three edges. We use V 

′ = [ v T 
0′ , v T 1′ , . . . , v T n′ ] to indicate the 

deformed vertices. E = [ e T 0 , e 
T 
1 , . . . , e 

T 
n ] , (e i = v a − v b ) was used to 

indicate the edges. The edges divide the visualization into several 

patches. The basic idea of mesh resizing is optimizing a linear en- 

ergy function as shown in [9] . The linear energy function can be 

defined as 
∫ h 
y

∫ w 
x S(x, y ) ‖ J F − P ‖ 2 2 d xd y , where J F is a Jacobian ma- 

trix, P represents the linear transformation, w and h is the width 

and height of the canvas, respectively. 

Inspired by Wang et al. [1] , we assume that triangles bound to 

areas with high saliency will be assigned a smaller scaling fac- 

tor, while triangles that cover less important areas can be dis- 

torted due to linear scaling operations. Our method is different 

from Wang et al. [1] because we change the basic controlling unit 

from a rectangular grid to a triangular mesh. The resizing energy 

for a triangle can be formulated as follows: 

R (t) = 

∑ 

{ m,n }∈ E(t) 

‖ ( v ′ m 

− v ′ n ) − s t (v m 

− v n ) ‖ 

2
(8) 

where t ∈ T indicates a triangular, s t is a scaling factor for each 

vertex v in the triangle and we assume that the scaling factors for 

x-axis and y-axis are the same, E(t) is a set of edges in t , v and v ′
respectively indicates the vertex of an original triangle and its cor- 

responding deformed vertex, ‖ · ‖ 2 is the L 2 norm of a vector. We

can differentiate R (t) and continue getting a direct solution of s t ,

as shown in [1] . As we can see, R (t) calculates the resizing energy

of edges, however, different triangular should have different warp

due to their different saliency. Hence, we need to take the saliency

value of each triangle into consideration. The resizing energy of all

triangles is defined as follows:

R = 

∑ 

t∈ T
λt R (t) = 

∑ 

t∈ T

1 

n 
R (t) 

∑ 

x ∈ P t 
S(x ) (9) 

where λt = 

1 
n 

∑ 

x ∈ P t S(x ) is the saliency of each triangle, P t is the 
set of all pixels in t and x indicates the position of a pixel, n is the 

number of pixels in P t . Because the saliency of each pixel can be 

calculated from the VSM, we can use a scan–line algorithm to de- 

tect the entire pixel saliency contained in one triangle. This leads 

to the triangle saliency λt . Because R is a quadratic energy func- 

tion, we can minimize the total resizing energy to obtain the final 

deformed vertices V 

′ . 

5.2.2. Constraints 

In order to get better resizing results, constraints should be 

taken into account. The constraints for resizing includes overlap- 

ping preventing, boundary and smoothing. We adopt a method 

as illustrated in [24] to guarantee that the mesh is resized accu- 

rately without overlap. Then, we formulate two constraints such as 

boundary checking and mesh smoothing for resizing. 
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Fig. 8. Results of three different strategies for content enhancement. (a) No enhancement. (b) Fisheye enhancement. (c) Content-aware enhancement without vectorial

adjustment. (d) Content-aware enhancement with vectorial adjustment.

Fig. 9. The result of enhancement without canvas resizing. The content in this visualization is a heat-map of users’ locations from Brightkite as described in Section 6.1.2 .

(a) Original visualization. (b) Triangulation of original visualization. (c) Enhanced visualization without canvas resizing. (d) Triangulation of enhanced visualization.

• Boundary Constraints

Because the boundary of the visualization should fulfill the lin- 

ear scaling to avoid the warp, R should obey the constraints on 

the boundary. We define the vertices set on the boundary as B, 

which includes four corner vertices and several vertices on four 

side edges of the boundary. The vertex set on four side edges can 

be defined as B( le f t ) , B( top ) , B( right ) and B( bottom ) . Hence, the 

constraints for B can be defined respectively as: ⎧ ⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v le f t , top = ( 0 , 0 ) 
T 
, 

v right , top = (w, 0) 
T 
,

v le f t , bottom 

= (0 , h ) 
T 
,

v right , bottom 

= (w, h ) 
T

(10) 

⎧ ⎪⎪⎪⎨
⎪⎪⎪⎩

v ′ i = (0 , v iy ) , i ∈ B ( le f t ) ,

v ′ i = (v ix , 0) , i ∈ B ( top ) ,

v ′ i = (w, v iy ) , i ∈ B ( right ) ,

v ′ i = (v ix , h ) , i ∈ B ( bottom ) .

(11) 

where w indicates the width of the canvas and h indicates the 

height of the canvas. 

• Smoothing Constraint

It is necessary to further avoid distortion via smoothing scaling fac- 

tors as mentioned in [1,3] . We formulate a scaling energy function 

as follows to smooth out the scaling factor of each triangle: 

E s = 

∑ 

t∈ T 

∑ 

n ∈ Adj (t)

1 

2 
(a t + a n ) (λt s t − λn s n ) 

2 
(12) 

where Adj (t) is a set of adjacent triangles of t , n indicates one ad- 

jacent triangle, a t and a n respectively represent the acreage of t 

and n . E s is an energy function that represents the distortion scal- 

ing factor of adjacent triangles. We can achieve better scaling fac- 

tors by optimizing E s . 

5.3. Vector adjustment 

For image resizing of visualizations, our algorithm also pre- 

serves the intended salient features. Furthermore, our algorithm 

can be easily extended to vector resizing of the visualization with 

feature preservation. Vector-based resizing means that some vector 

elements such as points and edges can be bound to the vertices in 

triangulated mesh. The positions of elements in visualization will 

be adjusted through the triangulated mesh resizing. We take the 

scatterplot in a world-map as an example. We assume points in 
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Fig. 10. Results of 3 different strategies for horizontal resizing of SGM 6.1.1 , GGM 6.1.2 and GC 6.1.3 . (a) Original visualization images. (b) Linear scaling. (c) Grid-based

resizing [1] . (d) Our method.

Table 1

The performance and evaluation of mesh deformation methods.

Cases Original size New size Method Vertices DOF Time cost (ms)

SGM Section 6.1.1 876 ×374 385 ×374 Grid-based [1] 741 4104 175

Our method 324 586 19

GGM Section 6.1.2 876 ×414 438 ×414 Grid-based 1012 5670 263

Our method 589 3242 64

GC Section 6.1.3 150 0 ×80 0 750 ×800 Grid-based 2886 16644 4739

Our method 853 4824 161

IG Section 6.1.4 678 ×680 1066 ×680 Grid-based 1849 10584 1337

Our method 611 3498 58

Hex Points 750 ×495 375 ×495 Grid-based 950 3800 206

Our method 408 2310 19

Graphs 600 ×363 300 ×363 Grid-based 465 2520 42

Our method 405 2322 19

Social Network 600 ×299 300 ×299 Grid-based 589 2356 54

Our method 280 1560 12

Heat-map 1126 ×563 663 ×563 Grid-based 1653 6612 1024

Our method 479 2694 30

China Map 1320 ×791 660 ×791 Grid-based 2688 10752 3932

Our method 393 2142 32

the scatterplot are the main regions and the background map is 

the context that also needs to be preserved. Each point will be 

bound to the vertex in the triangulated mesh. The adjustment of 

positions can be calculated from the controlling mesh via resiz- 

ing the visualization image. We use the whole visualization im- 

age to generate the saliency map and respectively resize the main 

part and the context part. In the final step, adjusted points will re- 

place the main part and combine with context part as final result 

according to their adjusted positions. As shown in Fig. 10 , in our 

experiments we adopt a hybrid method which takes advantage of 

both image resizing and vectorial resizing. This improves the re- 

sulting visual features. 

5.4. Content enhancement 

Content enhancement is aimed at further enhancing the impor- 

tant regions while resizing the canvas. Let’s take Fig. 8 as an ex- 

ample, there are so many overlapping plots in the region of Eu- 

rope that users are impeded to get integrated information. Fish- 

eye distortion can be a solution for this problem. However, there 

are two drawbacks of the fish-eye distortion method. First, man- 

ually selecting the significant region is tedious for users. Second, 

simple spherical representation is not enough to enhance irregular 

regions. 
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Fig. 11. Results of 3 different strategies for vertical resizing of GGM 6.1.2 .

Next, we present a method that can achieve better content en- 

hancement for information visualization. In addition, our method 

also has immediate applications in resizing content from a large 

display device to a very small one. In our method, we add an 

enhancing factor called δk to control the enhancement of differ- 

ent layers with different saliency layer in visualization because a 

scaling factor s t has been formulated in resizing energy function 

Equation (8) . k denotes the layer of saliency. We can formulate an 

enhancing energy function for content enhancement as shown in 

Equation (13) . Moreover, the values of δk can be adjusted by users 
to interactively enhance the desired regions. The interactive op- 

eration can be brushing over the triangles with a different value. 

Figs. 8 and 9 show two examples of content enhancement. 

E(t) = 

∑ 

{ m,n }∈ E(t) 

‖ ( v ′ m 

− v ′ n ) − s t δk λt (v m 

− v n ) ‖ 

2 
. (13) 

6. Experiments and results

All the experiments in this paper were performed on a com- 

puter with Windows 7 OS, an Intel i7 CPU 2.8 GHz and 8 GB RAM. 

We implemented the algorithm in C++ and used CGAL [25] library 

to generate the triangulation. Lapack++ and C++ library were em- 

ployed to solve the large sparse linear system of equations. 

We tested our method on several datasets and obtained bet- 

ter results than previous methods. Because we use the adaptive 

method to generate triangles, better performance can be achieved 

than previous methods for visualization resizing. We show the per- 

formance of our method on Table 1 and evaluate our work through 

the remaining saliency ( Fig. 15 ) in the resized visualization. 

6.1. Results 

We base our experiments on multi-layered information fea- 

tures for visualization. We analyze three cases of resizing using the 
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Fig. 12. Results of 2 different strategies for vertical resizing of GC 6.1.3 .

method presented in this paper. We compared our approach with 

the linear scaling and the grid-based method. Our results demon- 

strate that adaptive content-aware method has better visual fea- 

ture representation than the grid-based method for multi-layered 

visualization resizing. Furthermore, we show additional resizing re- 

sults in Fig. 14 . 

6.1.1. Scatterplots and geographical maps (SGM) 

In the first multi-layer visualization case, we select a dataset 

from numbeo.com that records the cost of living in the world. 

The scatterplots and geographical map (SGM) can be regarded as 

two layers of the visualization of this dataset. Scatterplots show 

the cost of living in different countries. Geographical map demon- 

strates the distribution of countries. The algorithm in [3] acts on 

just one layer in the visualization such as the scatterplots, and we 

take another layer such as the geographical map into considera- 

tion. Because the geographical map occupies a large area, comput- 

ing the cluster map in [3] requires more calculations. We can see 

that all the circles in Fig. 10 (top) suffer less distortion after the re- 

sizing using our method. We can also adjust the enhancing param- 

eter to enhance important regions in the visualization as shown in 

Fig. 8 (d). 

6.1.2. Graph and geographical maps (GGM) 

In the second case, we select a large dataset called Brightkite 

[26] . Each record in this dataset includes a geographical location.

When the canvas is resized without the content-aware constraints,

two main problems emerge. First, re-layout algorithm such as the

direct-force method is time-consuming for large graphs because

due to a large number of nodes. Second, the important regions are

not preserved. Although regular grid-based methods can preserve

important regions, the high density of grid will result in excessive

calculation because the computation is related to the grid density.

In our method, we bind each node with a nearby vertex in the

controlling mesh and redraw the nodes after resizing the mesh,

so that we can get high performance of content-aware resizing.

The resizing results of the GGM are shown in Fig. 10 (middle) and

Fig. 11 .

6.1.3. Graph and community (GC) 

The third example demonstrates the advantages of our method 

on dealing with the SSDC problem as discussed in Section 4.1 . We 

select a graph-based dataset, which indicates the relationship be- 

tween computer languages. This dataset can be considered as a so- 

cial network of computer language. In visualization, this dataset 
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Fig. 13. Results of 2 different methods for horizontal resizing of the visualization in IG 6.1.4 .

can be represented as graph and community. All nodes in the 

graph are assigned different colors according to their Modularity 

Classes , which were computed by a statistical method presented by 

Blondel et. al [27] . The nodes with similar color will build a com- 

munity which is presented as an ellipse-like shape in the visualiza- 

tion image. We draw the visualization image with the color palette 

from Tableau. Our result in Fig. 10 (bottom) and Fig. 12 show that 

our method can get a better result and avoid the problem of SSDC. 

6.1.4. Infographic (IG) 

The fourth example demonstrates the advantages of our 

method for handmade multi-layer visualization. Infographic is a vi- 

sual representation of information that utilize text, line, and graph- 

ics to improve the visual pattern discovery. Unlike splatterplot and 

graph, the layout of the infographic is usually created by vector 

graphics editor such as Adobe Illustrator. We selected a vector 

graphic from shutterstock.com and applied our method to resize 

the vector graphic. Our result in Fig. 13 (d) shows that our method 

can get a better result than linear scaling for infographics. 

6.2. Discussion 

6.2.1. Performance 

The performance of our method is better than previous resiz- 

ing algorithms for information visualizations as shown in Tables 

1 , 2 . The performance of mesh deformation has been significantly 

improved compared with the work of [1] because we generate an 

adaptive geometric mesh for content deformation. Our approach 

can substantially improve the performance when an image con- 

tains large empty regions, i.e. more than 50%. Table 1 shows that 

our method can reduce the vertex number, which is highly related 

to time cost of solving a linear equation. Wu et al. [3] also pre- 

sented an adaptive grid implementation with high accuracy. Since 

Table 2

The time cost of clutter map [21] and visual saliency map (ours).

Cases Canvas size Method Time cost (ms)

SGM

Section

6.1.1

876 ×374 Clutter map [21] 3441

Our method 472

GGM

Section

6.1.2

876 ×414 Clutter map 3813

Our method 525

GC

Section

6.1.3

150 0 ×80 0 Clutter map 12177

Our method 1749

IG

Section

6.1.4

678 ×680 Clutter map 4631

Our method 653

Hex

Points

750 ×495 Clutter map 3762

Our method 534

Graphs 600 ×363 Clutter map 2370

Our method 303

Social

Network

600 ×299 Clutter map 1973

Our method 254

Heat- 

map

1126 ×563 Clutter map 6477

Our method 943

China

Map

1320 ×791 Clutter map 10456

Our method 1553

it is slower than using a regular grid method, as mentioned by Wu 

et al. [3] , we do not compare adaptive grid method with ours. 

In addition, we adopt a fast method to create the VSM, so that 

more time-consuming calculations, such as estimating the kernel 
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Fig. 14. Additional results of four different methods for reducing the width of the visualization. Fig. 15 shows the saliency preservation of each method using the bottom

case in this figure. (a) Original visualization. (b) Cropping. (c) Linear resizing. (d) Grid-based resizing. (e) Ours.

density, can be avoided. Table 2 shows that our method is faster 

than using cluster map [21] . 

6.2.2. Evaluation 

There are many methods to evaluate the effect of visualization 

resizing as shown in the cognitive experiments [4] . In this paper, 

we mainly focus on evaluating three attributes such as the number 

of vertices in the controlling mesh, the degree of freedom (DOF) 

and time cost. DOF indicates the number of variables that are free 

to change in the final computation. DOF is a statistics concept and 

is often used in evaluating the performance of retargeting, such as 

[20] . Because our model has advantages on controlling mesh re- 

duction, DOF can be used in our evaluation. The results of the eval- 

uation are shown in Table 1 . From the evaluation, we find that our

method has better performance, especially for large canvas size,

and has less DOF than grid-based method.

Although image energy preservation methods [2] are normally 

used in pixel-based retargeting problems such as seam carving, 

they are also applicable to our method. The visual coherency can 

Fig. 15. A comparison of the preservation of content measured by the average pixel

saliency using four different method of resizing. The testing visualization is the bot- 

tom case as shown in Fig. 14 .

be evaluated quantitatively via calculating the percentage of en- 

ergy preservation. We use the saliency of each pixel instead of the 

gradient to calculate the preserved energy, because our method is 

based on a VSM. The average saliency of pixels is shown in Fig. 15 . 
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The figure shows the saliency preservation of four strategies and 

demonstrates that our method can effectively preserve the saliency 

content in the visualization while resizing the canvas. 

7. Conclusion

In this paper we present an adaptive triangle-mesh based 

method for content-aware resizing of information visualizations. 

We propose a visual saliency detector that follows seven criteria. 

The detected visual saliency map (VSM) is not only used to gener- 

ate adaptive meshes but also used to calculate the deformation fac- 

tor of each triangle. A robust resizing energy function is defined to 

implement mesh resizing. The experiments show that our method 

can be used effectively in redesigning visualization features for dif- 

ferent aspect ratio displays. 

In the future, we plan to further improve our method to au- 

tomatically classify features of visual representations into multiple 

layers, if the visualization does not have a clear multi-layered des- 

ignation. The work of cartoon and texture decomposition [28] is 

a potential direction to abstract the structure of multiple layers 

in information visualization. Another potential direction is using a 

deep learning saliency map [29] to guide the mesh deformation. 

Furthermore, motion-aware image resizing [30] and visual tracking 

technique [31] can be adopted to implement a dynamic resizing of 

information visualization. 
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